DETROIT STEELERS

GP: 5 | W: 2 | L: 2 | OTL: 1 | P: 5
GF: 16 | GA: 22 | PP%: 35.71% | PK%: 75.00%
GM : Jay W | Morale : 48 | Team Overall : 65
Next Games #60 vs CHICAGO UNDERTAKERS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alexei CherepanovX99.0011999667377789251828777719799049752
2Jakub Vrana (R)XX100.00635261908286858061778070648479052752
3Victor RaskX100.00332294838087908565797573577481046742
4Boo NievesXX100.00817542858988858453787467568075049742
5Kyle ChipchuraX100.00999931607963668681867383679999050742
6Rob Fabbri (R)XX100.00463381797893798859798063668273049732
7Michael Dal Colle (R)X100.00603767788787778050817668586770049722
8Nikita Scherbak (R)X100.00836837798285838360797657647372049722
9Nick Bjugstad XX100.00282785667695796359646957578076049642
10Brendan Perlini (R)X100.00534370648085786264676662556663049642
11Casey Mittelstadt (R)XXX100.0048978757569656455606457587460046621
12Nick SorensenX100.0034794747370756445575759567669048612
13Ian McCoshen (R)X98.00562778738180787253696670526873050682
14Sami LepistoX99.00655372637569646244636066619987049650
15Richard StehlikX100.00624974627650775244423274719387046622
16K'Andre Miller (R)X100.00782478616663655930605659446158046602
17Jacob Ragnarsson (R)X100.00612577585763675644595458445862045572
18Seth Barton (R)X100.00382776656563685033595058565852045562
Scratches
1Patric HornqvistX95.3819399657378849255838786678987034750
2Aleksi Heponiemi (R)X100.0018683706357586860686054685757045592
3Joni Ikonen (R)XX100.00342070657166655956635959605957045592
4Alexander Volkov (R)X100.00612268706863646039525460636059045582
5Carl Dahlstrom (R)X100.00524085778168749933888770457763045732
6Nathan GueninX100.00552199627857675850535375569695048650
7Ben LovejoyX100.00393094607860736070574475619495045642
8Olivier MagnanX100.00644590607868714850444471569086046630
9Filip Westerlund (R)X100.00645456686569616544575460515852045602
10Nils Lundkvist (R)X100.0012490666763695544585066446766042582
11Xavier Bernard (R)X100.00663067656158615033524757455351042562
TEAM AVERAGE99.7051337669747273695166636658757304665
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Cory Schneider97.0065727779747681778167658893049750
2Jake Oettinger (R)99.0067676575696161626660606470049641
Scratches
1Michael DiPietro (R)100.0063636467656361606060586159045612
2Keith Petruzzelli (R)100.0063596067636359625966656062045612
TEAM AVERAGE99.006565677268666665676362687104765
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff74796577848466CAN5521,001,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Rob FabbriDETROIT STEELERS (DET)C/LW5538-300312164931.25%08016.06224311000020066.67%332001.9900000101
2Boo NievesDETROIT STEELERS (DET)C/LW534706016573542.86%18416.91123110000030145.00%8051001.6600000010
3Ian McCoshenDETROIT STEELERS (DET)D5235-47567131215.38%1313927.86213214000114000.00%004000.7200001100
4Alexei CherepanovDETROIT STEELERS (DET)RW50550001810470.00%28917.91022210000180060.00%511001.1201000000
5Kyle ChipchuraDETROIT STEELERS (DET)C5044-4171511413460.00%39619.22000212000050063.37%10122000.8300111000
6Nikita ScherbakDETROIT STEELERS (DET)RW5033-4601238220.00%06412.8201104000000050.00%210000.9400000000
7Jakub VranaDETROIT STEELERS (DET)LW/RW5213-111584227149.09%511022.050112110000100052.63%1982000.5401100000
8Patric HornqvistDETROIT STEELERS (DET)RW4112-30007187115.56%38120.4200008000070047.83%2331000.4901000000
9Michael Dal ColleDETROIT STEELERS (DET)LW51120008813267.69%26513.040000000006100.00%030000.6100000010
10Victor RaskDETROIT STEELERS (DET)C5202-10017185411.11%16713.4700001000001055.26%3822000.5900000000
11Richard StehlikDETROIT STEELERS (DET)D5011-275547230.00%19919.9101101000017000.00%002000.2001010000
12Sami LepistoDETROIT STEELERS (DET)D5000-120437020.00%611222.46000011000010000.00%012000.0000000000
13Olivier MagnanDETROIT STEELERS (DET)D4000000692000.00%15614.020000000000000.00%002000.0000000000
14K'Andre MillerDETROIT STEELERS (DET)D5000020642020.00%06813.680000200004000.00%000000.0000000000
15Nathan GueninDETROIT STEELERS (DET)D4000-555673400.00%810526.270000900008000.00%012000.0000001000
16Jacob RagnarssonDETROIT STEELERS (DET)D1000000212000.00%01010.620000000000000.00%001000.0000000000
17Seth BartonDETROIT STEELERS (DET)D1000000001000.00%11212.370000000001000.00%000000.0000000000
18Nick SorensenDETROIT STEELERS (DET)RW1000000010000.00%077.670000000000000.00%001000.0000000000
19Brendan PerliniDETROIT STEELERS (DET)LW5000-220545020.00%0479.5900000000020050.00%200000.0000000000
20Nick Bjugstad DETROIT STEELERS (DET)C/RW5000100021140.00%1469.3700000000010062.50%820000.0000000000
21Casey MittelstadtDETROIT STEELERS (DET)C/LW/RW5000-100225180.00%0459.190000000000000.00%221000.0000000000
Team Total or Average90162642-30653510210217347879.25%48149116.5751015121220003942154.42%2833426000.5604223221
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake OettingerDETROIT STEELERS (DET)21000.8514.83870074723000.000014000
2Cory SchneiderDETROIT STEELERS (DET)41210.8933.59217001312263010.500241000
Team Total or Average62210.8823.95304002016986010.500255000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aleksi HeponiemiDETROIT STEELERS (DET)C201/9/1999 1:24:32 AMYes152 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$50,000$47,241$No
Alexander VolkovDETROIT STEELERS (DET)RW228/2/1997 7:14:54 AMYes183 Lbs6 ft0NoNoNo2ELCPro & Farm400,000$40,000$37,793$No
Alexei CherepanovDETROIT STEELERS (DET)RW318/25/1988 4:52:07 AMNo193 Lbs6 ft0NoNoNo1UFAPro & Farm652,500$65,250$61,650$No
Ben LovejoyDETROIT STEELERS (DET)D352/20/1984No222 Lbs6 ft2NoNoNo1UFAPro & Farm400,000$40,000$37,793$No
Boo NievesDETROIT STEELERS (DET)C/LW259/10/1994 3:35:10 AMNo222 Lbs6 ft3NoNoNo2RFAPro & Farm400,000$40,000$37,793$No
Brendan PerliniDETROIT STEELERS (DET)LW234/27/1996 1:50:19 AMYes220 Lbs6 ft5NoNoNo4RFAPro & Farm750,000$75,000$70,862$No
Carl DahlstromDETROIT STEELERS (DET)D241/28/1995 4:13:31 AMYes223 Lbs6 ft5NoNoNo3RFAPro & Farm500,000$50,000$47,241$No
Casey MittelstadtDETROIT STEELERS (DET)C/LW/RW2011/22/1998 4:49:13 AMYes206 Lbs6 ft2NoNoNo2ELCPro & Farm750,000$75,000$70,862$No
Cory SchneiderDETROIT STEELERS (DET)G333/18/1986No205 Lbs6 ft2NoNoNo4UFAPro & Farm1,288,850$128,885$121,774$No
Filip WesterlundDETROIT STEELERS (DET)D204/17/1999 1:33:33 AMYes185 Lbs6 ft1NoNoNo2ELCPro & Farm650,000$65,000$61,414$No
Ian McCoshenDETROIT STEELERS (DET)D248/5/1995 2:27:09 AMYes217 Lbs6 ft5NoNoNo3RFAPro & Farm650,000$65,000$61,414$No
Jacob RagnarssonDETROIT STEELERS (DET)D206/1/1999 4:21:24 AMYes200 Lbs6 ft0NoNoNo3ELCPro & Farm600,000$60,000$56,690$No
Jake OettingerDETROIT STEELERS (DET)G2012/18/1998 5:43:30 AMYes211 Lbs6 ft7NoNoNo2ELCPro & Farm750,000$75,000$70,862$No
Jakub VranaDETROIT STEELERS (DET)LW/RW232/28/1996 1:52:45 AMYes195 Lbs6 ft4NoNoNo3RFAPro & Farm750,000$75,000$70,862$No
Joni IkonenDETROIT STEELERS (DET)C/RW204/14/1999 7:30:54 AMYes180 Lbs6 ft1NoNoNo2ELCPro & Farm450,000$45,000$42,517$No
K'Andre MillerDETROIT STEELERS (DET)D191/21/2000 5:34:07 AMYes198 Lbs5 ft7NoNoNo3ELCPro & Farm750,000$75,000$70,862$No
Keith Petruzzelli DETROIT STEELERS (DET)G206/1/1999 8:28:57 AMYes203 Lbs6 ft1NoNoNo2ELCPro & Farm500,000$50,000$47,241$No
Kyle ChipchuraDETROIT STEELERS (DET)C332/19/1986No217 Lbs6 ft2NoNoNo1UFAPro & Farm1,000,000$100,000$94,483$NoNHL Link
Michael Dal ColleDETROIT STEELERS (DET)LW236/20/1996 1:32:58 AMYes198 Lbs6 ft4NoNoNo2RFAPro & Farm750,000$75,000$70,862$No
Michael DiPietroDETROIT STEELERS (DET)G206/9/1999 7:54:30 AMYes205 Lbs6 ft1NoNoNo2ELCPro & Farm650,000$65,000$61,414$No
Nathan GueninDETROIT STEELERS (DET)D3612/10/1982No215 Lbs6 ft2NoNoNo1UFAPro & Farm400,000$40,000$37,793$No
Nick Bjugstad DETROIT STEELERS (DET)C/RW277/10/1992 6:26:26 AMNo200 Lbs6 ft2NoNoNo5RFAPro & Farm600,000$60,000$56,690$No
Nick SorensenDETROIT STEELERS (DET)RW2410/23/1994 4:00:27 AMNo184 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$50,000$47,241$No
Nikita ScherbakDETROIT STEELERS (DET)RW2312/30/1995 2:23:27 AMYes188 Lbs6 ft3NoNoNo2RFAPro & Farm675,000$67,500$63,776$No
Nils LundkvistDETROIT STEELERS (DET)D197/27/2000 5:52:58 AMYes174 Lbs5 ft11NoNoNo3ELCPro & Farm650,000$65,000$61,414$No
Olivier MagnanDETROIT STEELERS (DET)D335/1/1986No220 Lbs6 ft2NoNoNo1UFAPro & Farm400,000$40,000$37,793$No
Patric HornqvistDETROIT STEELERS (DET)RW321/1/1987No197 Lbs5 ft11NoNoNo1UFAPro & Farm840,000$84,000$79,366$No
Richard StehlikDETROIT STEELERS (DET)D367/27/1983 6:24:25 AMNo208 Lbs6 ft0NoNoNo1UFAPro & Farm400,000$40,000$37,793$No
Rob FabbriDETROIT STEELERS (DET)C/LW231/22/1996 2:10:54 AMYes182 Lbs6 ft1NoNoNo4RFAPro & Farm700,000$70,000$66,138$No
Sami LepistoDETROIT STEELERS (DET)D3410/17/1984No205 Lbs6 ft0NoNoNo2UFAPro & Farm500,000$50,000$47,241$No
Seth BartonDETROIT STEELERS (DET)D196/1/2000 4:43:28 AMYes200 Lbs6 ft0NoNoNo3ELCPro & Farm550,000$55,000$51,966$No
Victor RaskDETROIT STEELERS (DET)C263/1/1993 2:45:02 AMNo215 Lbs6 ft3NoNoNo1RFAPro & Farm575,000$57,500$54,328$No
Xavier Bernard DETROIT STEELERS (DET)D206/1/1999 5:45:33 AMYes200 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$50,000$47,241$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3325.06201 Lbs6 ft22.24619,132$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakub VranaBoo NievesAlexei Cherepanov40122
2Rob FabbriKyle ChipchuraNikita Scherbak30122
3Michael Dal ColleVictor RaskNick Bjugstad 20122
4Brendan PerliniCasey MittelstadtNick Sorensen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshenSami Lepisto40122
2Richard StehlikK'Andre Miller30122
3Jacob RagnarssonSeth Barton20122
4Ian McCoshenSami Lepisto10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakub VranaBoo NievesAlexei Cherepanov60122
2Rob FabbriKyle ChipchuraNikita Scherbak40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshenSami Lepisto60122
2Richard StehlikK'Andre Miller40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jakub VranaAlexei Cherepanov60122
2Boo NievesKyle Chipchura40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshenSami Lepisto60122
2Richard StehlikK'Andre Miller40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jakub Vrana60122Ian McCoshenSami Lepisto60122
2Alexei Cherepanov40122Richard StehlikK'Andre Miller40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jakub VranaAlexei Cherepanov60122
2Boo NievesKyle Chipchura40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshenSami Lepisto60122
2Richard StehlikK'Andre Miller40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jakub VranaBoo NievesAlexei CherepanovIan McCoshenSami Lepisto
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jakub VranaBoo NievesAlexei CherepanovIan McCoshenSami Lepisto
Extra Forwards
Normal PowerPlayPenalty Kill
Victor Rask, Michael Dal Colle, Nick Bjugstad Victor Rask, Michael Dal ColleNick Bjugstad
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Ragnarsson, Seth Barton, Richard StehlikJacob RagnarssonSeth Barton, Richard Stehlik
Penalty Shots
Jakub Vrana, Alexei Cherepanov, Boo Nieves, Kyle Chipchura, Victor Rask
Goalie
#1 : Jake Oettinger, #2 : Cory Schneider
Custom OT Lines Forwards
Jakub Vrana, Alexei Cherepanov, Boo Nieves, Kyle Chipchura, Victor Rask, Rob Fabbri, Rob Fabbri, Michael Dal Colle, Nikita Scherbak, Nick Bjugstad , Brendan Perlini
Custom OT Lines Defensemen
Ian McCoshen, Sami Lepisto, Richard Stehlik, K'Andre Miller, Jacob Ragnarsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1CALGARY WRANGLERS11000000651000000000001100000065121.0006111700556034645158326914244250.00%7271.43%0539555.79%5610155.45%458552.94%11268105458743
2CHICAGO UNDERTAKERS1010000024-21010000024-20000000000000.0002351055603764515833711616200.00%3166.67%0539555.79%5610155.45%458552.94%11268105458743
3PHILADELPHIA PHANTOMS1010000016-51010000016-50000000000000.00012300556031645158339101219100.00%10100.00%0539555.79%5610155.45%458552.94%11268105458743
4SAN JOSE AVACADOES21000001770110000004311000000134-130.75071017005560716451583681833437342.86%5180.00%0539555.79%5610155.45%458552.94%11268105458743
Total522000011622-631200000713-62100000199050.5001626421055601736451583170486510214535.71%16475.00%0539555.79%5610155.45%458552.94%11268105458743
_Since Last GM Reset522000011622-631200000713-62100000199050.5001626421055601736451583170486510214535.71%16475.00%0539555.79%5610155.45%458552.94%11268105458743
_Vs Conference522000011622-631200000713-62100000199050.5001626421055601736451583170486510214535.71%16475.00%0539555.79%5610155.45%458552.94%11268105458743
_Vs Division522000011622-631200000713-62100000199050.5001626421055601736451583170486510214535.71%16475.00%0539555.79%5610155.45%458552.94%11268105458743

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
55W2162642173170486510210
All Games
GPWLOTWOTL SOWSOLGFGA
52200011622
Home Games
GPWLOTWOTL SOWSOLGFGA
3120000713
Visitor Games
GPWLOTWOTL SOWSOLGFGA
210000199
Last 10 Games
WLOTWOTL SOWSOL
220001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
14535.71%16475.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
64515835560
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
539555.79%5610155.45%458552.94%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11268105458743


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-09-068PHILADELPHIA PHANTOMS6DETROIT STEELERS1LBoxScore
4 - 2019-09-0822DETROIT STEELERS3SAN JOSE AVACADOES4LXXBoxScore
5 - 2019-09-0932CHICAGO UNDERTAKERS4DETROIT STEELERS2LBoxScore
7 - 2019-09-1146SAN JOSE AVACADOES3DETROIT STEELERS4WBoxScore
8 - 2019-09-1252DETROIT STEELERS6CALGARY WRANGLERS5WBoxScore
9 - 2019-09-1360DETROIT STEELERS-CHICAGO UNDERTAKERS-
11 - 2019-09-1575CHICAGO UNDERTAKERS-DETROIT STEELERS-
13 - 2019-09-1785DETROIT STEELERS-SAN JOSE AVACADOES-
15 - 2019-09-1996PENSACOLA BLACK BEARS-DETROIT STEELERS-
17 - 2019-09-21111DETROIT STEELERS-COLORADO CUBS-
18 - 2019-09-22113DETROIT STEELERS-CALGARY WRANGLERS-
19 - 2019-09-23124COLORADO CUBS-DETROIT STEELERS-
22 - 2019-09-26141DETROIT STEELERS-PHILADELPHIA PHANTOMS-
23 - 2019-09-27146DETROIT STEELERS-CHICAGO UNDERTAKERS-
24 - 2019-09-28154COLORADO CUBS-DETROIT STEELERS-
25 - 2019-09-29167DETROIT STEELERS-PENSACOLA BLACK BEARS-
27 - 2019-10-01176CALGARY WRANGLERS-DETROIT STEELERS-
29 - 2019-10-03192CHICAGO UNDERTAKERS-DETROIT STEELERS-
31 - 2019-10-05201DETROIT STEELERS-SAN JOSE AVACADOES-
32 - 2019-10-06207DETROIT STEELERS-CAPE BRETON LEPRECHAUNS-
34 - 2019-10-08218DETROIT STEELERS-PENSACOLA BLACK BEARS-
35 - 2019-10-09228SAN JOSE AVACADOES-DETROIT STEELERS-
36 - 2019-10-10238PENSACOLA BLACK BEARS-DETROIT STEELERS-
38 - 2019-10-12253COQUITLAM EXPRESS-DETROIT STEELERS-
40 - 2019-10-14261DETROIT STEELERS-CHICAGO UNDERTAKERS-
43 - 2019-10-17276BROOKLYN GRINDERS-DETROIT STEELERS-
44 - 2019-10-18287DETROIT STEELERS-NORTH VAN ROCKERS-
46 - 2019-10-20300BANGOR PUPPIES-DETROIT STEELERS-
49 - 2019-10-23313DETROIT STEELERS-EDMONTON OILERS-
50 - 2019-10-24323COLORADO CUBS-DETROIT STEELERS-
51 - 2019-10-25332DETROIT STEELERS-SYRACUSE BABY BULLS-
52 - 2019-10-26341NORTH VAN ROCKERS-DETROIT STEELERS-
55 - 2019-10-29356DETROIT STEELERS-CAPE BRETON LEPRECHAUNS-
56 - 2019-10-30364SAN JOSE AVACADOES-DETROIT STEELERS-
58 - 2019-11-01380CALGARY WRANGLERS-DETROIT STEELERS-
60 - 2019-11-03390DETROIT STEELERS-NEWTON NIGHTHAWKS-
61 - 2019-11-04397DETROIT STEELERS-COLORADO CUBS-
63 - 2019-11-06410MANHATTAN SWEDES-DETROIT STEELERS-
65 - 2019-11-08424PHILADELPHIA PHANTOMS-DETROIT STEELERS-
67 - 2019-11-10434DETROIT STEELERS-CALGARY WRANGLERS-
68 - 2019-11-11446DETROIT STEELERS-LAS CRUCES MESCALEROS-
70 - 2019-11-13456BANGOR PUPPIES-DETROIT STEELERS-
71 - 2019-11-14467DETROIT STEELERS-BROOKLYN GRINDERS-
72 - 2019-11-15477COLORADO CUBS-DETROIT STEELERS-
74 - 2019-11-17487DETROIT STEELERS-VANCOUVER THOUSANDAIRES-
75 - 2019-11-18499BROOKLYN GRINDERS-DETROIT STEELERS-
78 - 2019-11-21512DETROIT STEELERS-PHILADELPHIA PHANTOMS-
79 - 2019-11-22521CALGARY WRANGLERS-DETROIT STEELERS-
82 - 2019-11-25535HALIFAX HELL-DETROIT STEELERS-
83 - 2019-11-26544DETROIT STEELERS-SAN JOSE AVACADOES-
85 - 2019-11-28557DETROIT STEELERS-PHILADELPHIA PHANTOMS-
87 - 2019-11-30566PENSACOLA BLACK BEARS-DETROIT STEELERS-
89 - 2019-12-02580CAPE FEAR WILDCATS-DETROIT STEELERS-
90 - 2019-12-03588DETROIT STEELERS-CALGARY WRANGLERS-
92 - 2019-12-05604PINCHER CREEK WOLVERINES-DETROIT STEELERS-
93 - 2019-12-06609DETROIT STEELERS-CAPE FEAR WILDCATS-
95 - 2019-12-08620DETROIT STEELERS-BROOKLYN GRINDERS-
96 - 2019-12-09629SYRACUSE BABY BULLS-DETROIT STEELERS-
98 - 2019-12-11641DETROIT STEELERS-COLORADO CUBS-
99 - 2019-12-12651NEWTON NIGHTHAWKS-DETROIT STEELERS-
100 - 2019-12-13662DETROIT STEELERS-COQUITLAM EXPRESS-
103 - 2019-12-16672DETROIT STEELERS-HALIFAX HELL-
104 - 2019-12-17681NORTH VAN ROCKERS-DETROIT STEELERS-
105 - 2019-12-18693DETROIT STEELERS-CHICAGO UNDERTAKERS-
107 - 2019-12-20701VANCOUVER THOUSANDAIRES-DETROIT STEELERS-
108 - 2019-12-21716EDMONTON OILERS-DETROIT STEELERS-
111 - 2019-12-24735LAS CRUCES MESCALEROS-DETROIT STEELERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-12-26743DETROIT STEELERS-HAWAII PUNCH-
114 - 2019-12-27755DETROIT STEELERS-NORTH VAN ROCKERS-
115 - 2019-12-28763VANCOUVER THOUSANDAIRES-DETROIT STEELERS-
118 - 2019-12-31779MANHATTAN SWEDES-DETROIT STEELERS-
119 - 2020-01-01786DETROIT STEELERS-BANGOR PUPPIES-
121 - 2020-01-03801HAWAII PUNCH-DETROIT STEELERS-
122 - 2020-01-04808DETROIT STEELERS-BANGOR PUPPIES-
125 - 2020-01-07822DETROIT STEELERS-SYRACUSE BABY BULLS-
126 - 2020-01-08828CHICAGO UNDERTAKERS-DETROIT STEELERS-
130 - 2020-01-12845CAPE BRETON LEPRECHAUNS-DETROIT STEELERS-
131 - 2020-01-13848DETROIT STEELERS-PENSACOLA BLACK BEARS-
134 - 2020-01-16866CAPE BRETON LEPRECHAUNS-DETROIT STEELERS-
136 - 2020-01-18885PHILADELPHIA PHANTOMS-DETROIT STEELERS-
138 - 2020-01-20890DETROIT STEELERS-PINCHER CREEK WOLVERINES-
139 - 2020-01-21898DETROIT STEELERS-MANHATTAN SWEDES-
142 - 2020-01-24909DETROIT STEELERS-EDMONTON OILERS-
144 - 2020-01-26923PHILADELPHIA PHANTOMS-DETROIT STEELERS-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance4,8673,000
Attendance PCT81.12%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
39 2622 - 87.41% 71,782$215,345$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
167,952$ 2,043,135$ 132,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
2,043,135$ 112,728$ 33 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,799,485$ 137 20,994$ 2,876,178$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
784343304445283281242181701321132132042161603124151149268283484767117210499162703843925908682452859149718162836522.97%3517877.78%6909178950.81%903179350.36%679129752.35%1864108217357751498734
8522000011622-631200000713-62100000199051626421055601736451583170486510214535.71%16475.00%0539555.79%5610155.45%458552.94%11268105458743
Total Regular Season89363504446299303-445191901321139145-6441716031251601582732995108092177109105162876907976966712622907156219182977023.57%3678277.66%6962188451.06%959189450.63%724138252.39%1976115018418201585777
Playoff
720164000007249239720000026206119200000462917327212319500222819366521924518516627185273404451124.44%791679.75%018541744.36%22946649.14%12929144.33%425252435190352167
Total Playoff20164000007249239720000026206119200000462917327212319500222819366521924518516627185273404451124.44%791679.75%018541744.36%22946649.14%12929144.33%425252435190352167