DETROIT STEELERS

GP: 32 | W: 19 | L: 10 | OTL: 3 | P: 41
GF: 113 | GA: 100 | PP%: 31.33% | PK%: 74.49%
GM : Jay W | Morale : 60 | Team Overall : 65
Next Games #356 vs CAPE BRETON LEPRECHAUNS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alexei CherepanovX100.0011999667377789251828777719799068752
2Boo NievesXX100.00817542858988858453787467568075078752
3Patric HornqvistX98.0019399657378849255838786678987054750
4Victor RaskX100.00332294838087908565797573577481065742
5Kyle ChipchuraX100.00999931607963668681867383679999065742
6Rob Fabbri (R)XX100.00463381797893798859798063668273068742
7Michael Dal Colle (R)X100.00603767788787778050817668586770068722
8Nikita Scherbak (R)X100.00836837798285838360797657647372072722
9Nick Bjugstad XX100.00282785667695796359646957578076068642
10Casey Mittelstadt (R)XXX100.0048978757569656455606457587460065621
11Aleksi Heponiemi (R)X100.0018683706357586860686054685757045592
12Julius Honka (R)X100.00562980858381878345747073517871054732
13Ian McCoshen (R)X100.00562778738180787253696670526873069682
14Madison BoweyX100.00401097848382806341695171446373057682
15Sami LepistoX100.00655372637569646244636066619987071650
16K'Andre Miller (R)X100.00782478616663655930605659446158058602
17Nils Lundkvist (R)X100.0012490666763695544585066446766025582
18Seth Barton (R)X100.00382776656563685033595058565852048562
Scratches
1Brendan Perlini (R)X100.00534370648085786264676662556663058642
2Nick SorensenX100.0034794747370756445575759567669033612
3Alexander Volkov (R)X100.00612268706863646039525460636059020582
4Joni Ikonen (R)XX100.00342070657166655956635959605957020582
5Nathan GueninX100.00552199627857675850535375569695028650
6Ben LovejoyX100.00393094607860736070574475619495022642
7Olivier MagnanX100.00644590607868714850444471569086035630
8Richard StehlikX100.00624974627650775244423274719387038622
9Filip Westerlund (R)X100.00645456686569616544575460515852020592
10Jacob Ragnarsson (R)X100.00612577585763675644595458445862020572
11Xavier Bernard (R)X100.00663067656158615033524757455351020562
TEAM AVERAGE99.9350317769747273685165626657757304965
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jake Oettinger (R)100.0067676575696161626660606470056641
2Michael DiPietro (R)100.0063636467656361606060586159031612
Scratches
1Cory Schneider99.0065727779747681778167658893066750
2Keith Petruzzelli (R)100.0063596067636359625966656062022612
TEAM AVERAGE99.756565677268666665676362687104465
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff74796577848466CAN5521,001,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Patric HornqvistDETROIT STEELERS (DET)RW301920393001446101376518.81%2367222.40931215630002704245.71%1401414021.1604000234
2Boo NievesDETROIT STEELERS (DET)C/LW32112637688301014482295113.41%1760318.872101213650000152245.30%2873213001.2311303321
3Rob FabbriDETROIT STEELERS (DET)C/LW3217173410204238101285016.83%754116.912466540001142045.83%24198001.2601000144
4Victor RaskDETROIT STEELERS (DET)C3292433700153910032509.00%1155817.460101010460000191048.99%5431710001.1801000111
5Kyle ChipchuraDETROIT STEELERS (DET)C3282432479451015159223413.56%856117.542575560000192161.68%535511101.1401243400
6Alexei CherepanovDETROIT STEELERS (DET)RW32101424500106079205812.66%1459118.503257530002690048.15%27136000.8125000013
7Nikita ScherbakDETROIT STEELERS (DET)RW32615212482066218127387.41%840712.72022010000080126.67%15181001.0300211211
8Madison BoweyDETROIT STEELERS (DET)D3341317600125337221810.81%4983725.39246696000074000.00%0916000.4100000001
9Michael Dal ColleDETROIT STEELERS (DET)LW329615540544581234911.11%1145414.20000000000334033.33%121611000.6600000121
10Ian McCoshenDETROIT STEELERS (DET)D32410145135364741699.76%4777524.22426565011188010.00%01222000.3600001100
11Julius HonkaDETROIT STEELERS (DET)D1555105603218279918.52%2441727.83303436000040100.00%01312000.4800000011
12Sami LepistoDETROIT STEELERS (DET)D32178101553747281293.57%2464720.24033254000045000.00%0419000.2500100110
13Jakub VranaDETROIT RED WINGSLW/RW12437017521125318267.55%1126522.130116250000290058.49%53206000.5312100000
14Nick Bjugstad DETROIT STEELERS (DET)C/RW3225740031720112410.00%832710.2400000000160051.09%13754000.4300000000
15K'Andre MillerDETROIT STEELERS (DET)D300552604022171070.00%2344914.99000013000023000.00%008000.2200000000
16Seth BartonDETROIT STEELERS (DET)D1911227541053120.00%1724112.720000100006000.00%004000.1700001000
17Casey MittelstadtDETROIT STEELERS (DET)C/LW/RW32112-56013123114243.23%42598.1200001000020033.33%1295000.1500000010
18Ben LovejoyDETROIT STEELERS (DET)D2011-155044020.00%02914.610000100000000.00%002000.6800010000
19Richard StehlikDETROIT STEELERS (DET)D160111135231016970.00%725115.75011112000117000.00%006000.0801010000
20Brendan PerliniDETROIT STEELERS (DET)LW24101-38018181810115.56%32299.5500000101170060.00%562000.0900000001
21Aleksi HeponiemiDETROIT STEELERS (DET)C16011-14031283100.00%31408.7800002000000047.37%5731000.1400000000
22Zach BogosianDETROIT RED WINGSD9000-1003913750.00%2021523.97000114000023000.00%003000.0000000000
23Olivier MagnanDETROIT STEELERS (DET)D100002558147020.00%213513.540000100009000.00%002000.0000001000
24Nils LundkvistDETROIT STEELERS (DET)D8000100021100.00%1394.890000000000000.00%001000.0000000000
25Nathan GueninDETROIT STEELERS (DET)D6000-655793410.00%1213622.7300001100009000.00%013000.0000001000
26Jacob RagnarssonDETROIT STEELERS (DET)D3000-100315000.00%23812.690000000000000.00%002000.0000000000
27Nick SorensenDETROIT STEELERS (DET)RW10000-300236020.00%0444.4900000000000025.00%412000.0000000000
Team Total or Average59511219931159331135668664102435756210.94%356987316.5927477481690112963516751.76%1851217194120.634169711161718
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Cory SchneiderDETROIT STEELERS (DET)2214530.9162.4813090054642341110.7147227102
2Jake OettingerDETROIT STEELERS (DET)115500.8674.155930041309162001.00061015000
3Michael DiPietroDETROIT STEELERS (DET)10000.8752.79430021612000.000009000
Team Total or Average34191030.9002.9919450097967515110.846133231102


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aleksi HeponiemiDETROIT STEELERS (DET)C201/9/1999 1:24:32 AMYes152 Lbs5 ft11NoNoNo2Pro & Farm500,000$313,793$40,000$25,103$50,000$31,379$No500,000$
Alexander VolkovDETROIT STEELERS (DET)RW228/2/1997 7:14:54 AMYes183 Lbs6 ft0NoNoNo2Pro & Farm400,000$251,034$40,000$25,103$40,000$25,103$No400,000$
Alexei CherepanovDETROIT STEELERS (DET)RW318/25/1988 4:52:07 AMNo193 Lbs6 ft0NoNoNo1Pro & Farm652,500$409,500$40,000$25,103$65,250$40,950$No
Ben LovejoyDETROIT STEELERS (DET)D352/20/1984No222 Lbs6 ft2NoNoNo1Pro & Farm400,000$251,034$40,000$25,103$40,000$25,103$No
Boo NievesDETROIT STEELERS (DET)C/LW259/10/1994 3:35:10 AMNo222 Lbs6 ft3NoNoNo2Pro & Farm425,000$266,724$40,000$25,103$42,500$26,672$No425,000$
Brendan PerliniDETROIT STEELERS (DET)LW234/27/1996 1:50:19 AMYes220 Lbs6 ft5NoNoNo4Pro & Farm750,000$470,690$40,000$25,103$75,000$47,069$No750,000$750,000$750,000$
Casey MittelstadtDETROIT STEELERS (DET)C/LW/RW2111/22/1998 4:49:13 AMYes206 Lbs6 ft2NoNoNo2Pro & Farm750,000$470,690$40,000$25,103$75,000$47,069$No750,000$
Cory SchneiderDETROIT STEELERS (DET)G333/18/1986No205 Lbs6 ft2NoNoNo4Pro & Farm1,288,850$808,864$40,000$25,103$128,885$80,886$No1,288,850$1,288,850$1,288,850$
Filip WesterlundDETROIT STEELERS (DET)D204/17/1999 1:33:33 AMYes185 Lbs6 ft1NoNoNo2Pro & Farm650,000$407,931$40,000$25,103$65,000$40,793$No650,000$
Ian McCoshenDETROIT STEELERS (DET)D248/5/1995 2:27:09 AMYes217 Lbs6 ft5NoNoNo3Pro & Farm650,000$407,931$40,000$25,103$65,000$40,793$No650,000$650,000$
Jacob RagnarssonDETROIT STEELERS (DET)D206/1/1999 4:21:24 AMYes200 Lbs6 ft0NoNoNo3Pro & Farm600,000$376,552$40,000$25,103$60,000$37,655$No600,000$600,000$
Jake OettingerDETROIT STEELERS (DET)G2012/18/1998 5:43:30 AMYes211 Lbs6 ft7NoNoNo2Pro & Farm750,000$470,690$40,000$25,103$75,000$47,069$No750,000$
Joni IkonenDETROIT STEELERS (DET)C/RW204/14/1999 7:30:54 AMYes180 Lbs6 ft1NoNoNo2Pro & Farm450,000$282,414$40,000$25,103$45,000$28,241$No450,000$
Julius HonkaDETROIT STEELERS (DET)D2412/3/1995 1:55:06 AMYes189 Lbs6 ft1NoNoNo3Pro & Farm775,000$486,379$40,000$25,103$77,500$48,638$No775,000$775,000$
K'Andre MillerDETROIT STEELERS (DET)D191/21/2000 5:34:07 AMYes198 Lbs5 ft7NoNoNo3Pro & Farm750,000$470,690$40,000$25,103$75,000$47,069$No750,000$750,000$
Keith Petruzzelli DETROIT STEELERS (DET)G206/1/1999 8:28:57 AMYes203 Lbs6 ft1NoNoNo2Pro & Farm500,000$313,793$40,000$25,103$50,000$31,379$No500,000$
Kyle ChipchuraDETROIT STEELERS (DET)C332/19/1986No217 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$627,586$40,000$25,103$100,000$62,759$NoNHL Link
Madison BoweyDETROIT STEELERS (DET)D244/22/1995 4:17:40 AMNo216 Lbs6 ft2NoNoNo3Pro & Farm812,500$509,914$40,000$25,103$81,250$50,991$No812,500$812,500$
Michael Dal ColleDETROIT STEELERS (DET)LW236/20/1996 1:32:58 AMYes198 Lbs6 ft4NoNoNo2Pro & Farm750,000$470,690$40,000$25,103$75,000$47,069$No750,000$
Michael DiPietroDETROIT STEELERS (DET)G206/9/1999 7:54:30 AMYes205 Lbs6 ft1NoNoNo2Pro & Farm650,000$407,931$40,000$25,103$65,000$40,793$No650,000$
Nathan GueninDETROIT STEELERS (DET)D3612/10/1982No215 Lbs6 ft2NoNoNo1Pro & Farm400,000$251,034$40,000$25,103$40,000$25,103$No
Nick Bjugstad DETROIT STEELERS (DET)C/RW277/10/1992 6:26:26 AMNo200 Lbs6 ft2NoNoNo5Pro & Farm600,000$376,552$40,000$25,103$60,000$37,655$No600,000$600,000$600,000$600,000$
Nick SorensenDETROIT STEELERS (DET)RW2510/23/1994 4:00:27 AMNo184 Lbs6 ft1NoNoNo1Pro & Farm500,000$313,793$40,000$25,103$50,000$31,379$No
Nikita ScherbakDETROIT STEELERS (DET)RW2312/30/1995 2:23:27 AMYes188 Lbs6 ft3NoNoNo2Pro & Farm675,000$423,621$40,000$25,103$67,500$42,362$No675,000$
Nils LundkvistDETROIT STEELERS (DET)D197/27/2000 5:52:58 AMYes174 Lbs5 ft11NoNoNo3Pro & Farm650,000$407,931$40,000$25,103$65,000$40,793$No650,000$650,000$
Olivier MagnanDETROIT STEELERS (DET)D335/1/1986No220 Lbs6 ft2NoNoNo1Pro & Farm400,000$251,034$40,000$25,103$40,000$25,103$No
Patric HornqvistDETROIT STEELERS (DET)RW321/1/1987No197 Lbs5 ft11NoNoNo1Pro & Farm865,000$542,862$40,000$25,103$86,500$54,286$No
Richard StehlikDETROIT STEELERS (DET)D367/27/1983 6:24:25 AMNo208 Lbs6 ft0NoNoNo1Pro & Farm400,000$251,034$40,000$25,103$40,000$25,103$No
Rob FabbriDETROIT STEELERS (DET)C/LW231/22/1996 2:10:54 AMYes182 Lbs6 ft1NoNoNo4Pro & Farm700,000$439,310$40,000$25,103$70,000$43,931$No700,000$700,000$700,000$
Sami LepistoDETROIT STEELERS (DET)D3510/17/1984No205 Lbs6 ft0NoNoNo2Pro & Farm500,000$313,793$40,000$25,103$50,000$31,379$No500,000$
Seth BartonDETROIT STEELERS (DET)D196/1/2000 4:43:28 AMYes200 Lbs6 ft0NoNoNo3Pro & Farm550,000$345,172$40,000$25,103$55,000$34,517$No550,000$550,000$
Victor RaskDETROIT STEELERS (DET)C263/1/1993 2:45:02 AMNo215 Lbs6 ft3NoNoNo1Pro & Farm575,000$360,862$40,000$25,103$57,500$36,086$No
Xavier Bernard DETROIT STEELERS (DET)D206/1/1999 5:45:33 AMYes200 Lbs6 ft0NoNoNo3Pro & Farm500,000$313,793$40,000$25,103$50,000$31,379$No500,000$500,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3325.18200 Lbs6 ft12.24630,874$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Boo NievesVictor RaskPatric Hornqvist40122
2Rob FabbriKyle ChipchuraAlexei Cherepanov30122
3Michael Dal ColleNick Bjugstad Nikita Scherbak20122
4Michael Dal ColleAleksi HeponiemiCasey Mittelstadt10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius HonkaMadison Bowey40122
2Ian McCoshenSami Lepisto30122
3K'Andre MillerSeth Barton20122
4Julius HonkaNils Lundkvist10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Boo NievesVictor RaskPatric Hornqvist60122
2Rob FabbriKyle ChipchuraAlexei Cherepanov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius HonkaMadison Bowey60122
2Ian McCoshenSami Lepisto40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Patric HornqvistAlexei Cherepanov60122
2Victor RaskBoo Nieves40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius HonkaIan McCoshen60122
2Madison BoweySami Lepisto40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Patric Hornqvist60122Julius HonkaIan McCoshen60122
2Alexei Cherepanov40122Madison BoweySami Lepisto40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Patric HornqvistAlexei Cherepanov60122
2Victor RaskBoo Nieves40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Julius HonkaIan McCoshen60122
2Madison BoweyNils Lundkvist40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Boo NievesVictor RaskPatric HornqvistJulius HonkaIan McCoshen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Boo NievesVictor RaskPatric HornqvistJulius HonkaIan McCoshen
Extra Forwards
Normal PowerPlayPenalty Kill
Aleksi Heponiemi, Nikita Scherbak, Michael Dal ColleAleksi Heponiemi, Nikita ScherbakMichael Dal Colle
Extra Defensemen
Normal PowerPlayPenalty Kill
K'Andre Miller, Nils Lundkvist, Madison BoweyK'Andre MillerSeth Barton, Madison Bowey
Penalty Shots
Patric Hornqvist, Alexei Cherepanov, Victor Rask, Boo Nieves, Kyle Chipchura
Goalie
#1 : Jake Oettinger, #2 : Michael DiPietro
Custom OT Lines Forwards
Patric Hornqvist, Alexei Cherepanov, Victor Rask, Boo Nieves, Kyle Chipchura, Rob Fabbri, Rob Fabbri, Nikita Scherbak, Michael Dal Colle, Nick Bjugstad ,
Custom OT Lines Defensemen
Julius Honka, Ian McCoshen, Madison Bowey, Sami Lepisto, K'Andre Miller


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BANGOR PUPPIES1010000014-31010000014-30000000000000.00012300303644427333341319223314615000.00%3166.67%034365752.21%34766652.10%26851651.94%709422673287563282
2BROOKLYN GRINDERS11000000624110000006240000000000021.00061016003036444283333413192232128186233.33%4175.00%034365752.21%34766652.10%26851651.94%709422673287563282
3CALGARY WRANGLERS3200010012111110000005412100010077050.83312213300303644496333341319227633186213430.77%9277.78%034365752.21%34766652.10%26851651.94%709422673287563282
4CAPE BRETON LEPRECHAUNS1010000035-2000000000001010000035-200.000358003036444303333413192225124213133.33%220.00%034365752.21%34766652.10%26851651.94%709422673287563282
5CHICAGO UNDERTAKERS624000001517-232100000127530300000310-740.33315254010303644417733334131922184566914917529.41%27774.07%034365752.21%34766652.10%26851651.94%709422673287563282
6COLORADO CUBS42000011141043200000110731000001043170.875142135003036444149333341319221255522849111.11%10280.00%034365752.21%34766652.10%26851651.94%709422673287563282
7COQUITLAM EXPRESS11000000523110000005230000000000021.000591400303644427333341319221872230200.00%6183.33%034365752.21%34766652.10%26851651.94%709422673287563282
8EDMONTON OILERS11000000532000000000001100000053221.0005813003036444313333413192230150197342.86%000.00%034365752.21%34766652.10%26851651.94%709422673287563282
9NORTH VAN ROCKERS211000008801010000016-51100000072520.5008152300303644447333341319226113273111100.00%60100.00%034365752.21%34766652.10%26851651.94%709422673287563282
10PENSACOLA BLACK BEARS4210001015105220000009452010001066060.750152540003036444128333341319221184218784125.00%9277.78%134365752.21%34766652.10%26851651.94%709422673287563282
11PHILADELPHIA PHANTOMS2110000047-31010000016-51100000031220.50047110030364446433334131922691918383133.33%40100.00%034365752.21%34766652.10%26851651.94%709422673287563282
12SAN JOSE AVACADOES530000112315822000000106431000011139490.90023406300303644416733334131922171511049517741.18%13561.54%034365752.21%34766652.10%26851651.94%709422673287563282
13SYRACUSE BABY BULLS1010000026-4000000000001010000026-400.000246003036444293333413192226111520100.00%5260.00%034365752.21%34766652.10%26851651.94%709422673287563282
Total3216100013211310013161140000160481216560013153521410.641113192305103036444100033334131922968340331660832631.33%982574.49%134365752.21%34766652.10%26851651.94%709422673287563282
_Since Last GM Reset3216100013211310013161140000160481216560013153521410.641113192305103036444100033334131922968340331660832631.33%982574.49%134365752.21%34766652.10%26851651.94%709422673287563282
_Vs Conference2914900132101891215104000015546914450013146433370.63810117127210303644491333334131922894307294591732331.51%872274.71%134365752.21%34766652.10%26851651.94%709422673287563282
_Vs Division2010500122686081072000013830810330012130300270.6756811418210303644465333334131922625214231428591830.51%631674.60%034365752.21%34766652.10%26851651.94%709422673287563282

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3241L2113192305100096834033166010
All Games
GPWLOTWOTL SOWSOLGFGA
3216100132113100
Home Games
GPWLOTWOTL SOWSOLGFGA
1611400016048
Visitor Games
GPWLOTWOTL SOWSOLGFGA
165601315352
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
832631.33%982574.49%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
333341319223036444
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34365752.21%34766652.10%26851651.94%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
709422673287563282


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-09-068PHILADELPHIA PHANTOMS6DETROIT STEELERS1LBoxScore
4 - 2019-09-0822DETROIT STEELERS3SAN JOSE AVACADOES4LXXBoxScore
5 - 2019-09-0932CHICAGO UNDERTAKERS4DETROIT STEELERS2LBoxScore
7 - 2019-09-1146SAN JOSE AVACADOES3DETROIT STEELERS4WBoxScore
8 - 2019-09-1252DETROIT STEELERS6CALGARY WRANGLERS5WBoxScore
9 - 2019-09-1360DETROIT STEELERS1CHICAGO UNDERTAKERS4LBoxScore
11 - 2019-09-1575CHICAGO UNDERTAKERS2DETROIT STEELERS3WBoxScore
13 - 2019-09-1785DETROIT STEELERS5SAN JOSE AVACADOES1WBoxScore
15 - 2019-09-1996PENSACOLA BLACK BEARS2DETROIT STEELERS3WBoxScore
17 - 2019-09-21111DETROIT STEELERS4COLORADO CUBS3WXXBoxScore
18 - 2019-09-22113DETROIT STEELERS1CALGARY WRANGLERS2LXBoxScore
19 - 2019-09-23124COLORADO CUBS2DETROIT STEELERS4WBoxScore
22 - 2019-09-26141DETROIT STEELERS3PHILADELPHIA PHANTOMS1WBoxScore
23 - 2019-09-27146DETROIT STEELERS1CHICAGO UNDERTAKERS3LBoxScore
24 - 2019-09-28154COLORADO CUBS4DETROIT STEELERS3LXXBoxScore
25 - 2019-09-29167DETROIT STEELERS5PENSACOLA BLACK BEARS4WXXBoxScore
27 - 2019-10-01176CALGARY WRANGLERS4DETROIT STEELERS5WBoxScore
29 - 2019-10-03192CHICAGO UNDERTAKERS1DETROIT STEELERS7WBoxScore
31 - 2019-10-05201DETROIT STEELERS5SAN JOSE AVACADOES4WXXBoxScore
32 - 2019-10-06207DETROIT STEELERS3CAPE BRETON LEPRECHAUNS5LBoxScore
34 - 2019-10-08218DETROIT STEELERS1PENSACOLA BLACK BEARS2LBoxScore
35 - 2019-10-09228SAN JOSE AVACADOES3DETROIT STEELERS6WBoxScore
36 - 2019-10-10238PENSACOLA BLACK BEARS2DETROIT STEELERS6WBoxScore
38 - 2019-10-12253COQUITLAM EXPRESS2DETROIT STEELERS5WBoxScore
40 - 2019-10-14261DETROIT STEELERS1CHICAGO UNDERTAKERS3LBoxScore
43 - 2019-10-17276BROOKLYN GRINDERS2DETROIT STEELERS6WBoxScore
44 - 2019-10-18287DETROIT STEELERS7NORTH VAN ROCKERS2WBoxScore
46 - 2019-10-20300BANGOR PUPPIES4DETROIT STEELERS1LBoxScore
49 - 2019-10-23313DETROIT STEELERS5EDMONTON OILERS3WBoxScore
50 - 2019-10-24323COLORADO CUBS1DETROIT STEELERS3WBoxScore
51 - 2019-10-25332DETROIT STEELERS2SYRACUSE BABY BULLS6LBoxScore
52 - 2019-10-26341NORTH VAN ROCKERS6DETROIT STEELERS1LBoxScore
55 - 2019-10-29356DETROIT STEELERS-CAPE BRETON LEPRECHAUNS-
56 - 2019-10-30364SAN JOSE AVACADOES-DETROIT STEELERS-
58 - 2019-11-01380CALGARY WRANGLERS-DETROIT STEELERS-
60 - 2019-11-03390DETROIT STEELERS-NEWTON NIGHTHAWKS-
61 - 2019-11-04397DETROIT STEELERS-COLORADO CUBS-
63 - 2019-11-06410MANHATTAN SWEDES-DETROIT STEELERS-
65 - 2019-11-08424PHILADELPHIA PHANTOMS-DETROIT STEELERS-
67 - 2019-11-10434DETROIT STEELERS-CALGARY WRANGLERS-
68 - 2019-11-11446DETROIT STEELERS-LAS CRUCES MESCALEROS-
70 - 2019-11-13456BANGOR PUPPIES-DETROIT STEELERS-
71 - 2019-11-14467DETROIT STEELERS-BROOKLYN GRINDERS-
72 - 2019-11-15477COLORADO CUBS-DETROIT STEELERS-
74 - 2019-11-17487DETROIT STEELERS-VANCOUVER THOUSANDAIRES-
75 - 2019-11-18499BROOKLYN GRINDERS-DETROIT STEELERS-
78 - 2019-11-21512DETROIT STEELERS-PHILADELPHIA PHANTOMS-
79 - 2019-11-22521CALGARY WRANGLERS-DETROIT STEELERS-
82 - 2019-11-25535HALIFAX HELL-DETROIT STEELERS-
83 - 2019-11-26544DETROIT STEELERS-SAN JOSE AVACADOES-
85 - 2019-11-28557DETROIT STEELERS-PHILADELPHIA PHANTOMS-
87 - 2019-11-30566PENSACOLA BLACK BEARS-DETROIT STEELERS-
89 - 2019-12-02580CAPE FEAR WILDCATS-DETROIT STEELERS-
90 - 2019-12-03588DETROIT STEELERS-CALGARY WRANGLERS-
92 - 2019-12-05604PINCHER CREEK WOLVERINES-DETROIT STEELERS-
93 - 2019-12-06609DETROIT STEELERS-CAPE FEAR WILDCATS-
95 - 2019-12-08620DETROIT STEELERS-BROOKLYN GRINDERS-
96 - 2019-12-09629SYRACUSE BABY BULLS-DETROIT STEELERS-
98 - 2019-12-11641DETROIT STEELERS-COLORADO CUBS-
99 - 2019-12-12651NEWTON NIGHTHAWKS-DETROIT STEELERS-
100 - 2019-12-13662DETROIT STEELERS-COQUITLAM EXPRESS-
103 - 2019-12-16672DETROIT STEELERS-HALIFAX HELL-
104 - 2019-12-17681NORTH VAN ROCKERS-DETROIT STEELERS-
105 - 2019-12-18693DETROIT STEELERS-CHICAGO UNDERTAKERS-
107 - 2019-12-20701VANCOUVER THOUSANDAIRES-DETROIT STEELERS-
108 - 2019-12-21716EDMONTON OILERS-DETROIT STEELERS-
111 - 2019-12-24735LAS CRUCES MESCALEROS-DETROIT STEELERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-12-26743DETROIT STEELERS-HAWAII PUNCH-
114 - 2019-12-27755DETROIT STEELERS-NORTH VAN ROCKERS-
115 - 2019-12-28763VANCOUVER THOUSANDAIRES-DETROIT STEELERS-
118 - 2019-12-31779MANHATTAN SWEDES-DETROIT STEELERS-
119 - 2020-01-01786DETROIT STEELERS-BANGOR PUPPIES-
121 - 2020-01-03801HAWAII PUNCH-DETROIT STEELERS-
122 - 2020-01-04808DETROIT STEELERS-BANGOR PUPPIES-
125 - 2020-01-07822DETROIT STEELERS-SYRACUSE BABY BULLS-
126 - 2020-01-08828CHICAGO UNDERTAKERS-DETROIT STEELERS-
130 - 2020-01-12845CAPE BRETON LEPRECHAUNS-DETROIT STEELERS-
131 - 2020-01-13848DETROIT STEELERS-PENSACOLA BLACK BEARS-
134 - 2020-01-16866CAPE BRETON LEPRECHAUNS-DETROIT STEELERS-
136 - 2020-01-18885PHILADELPHIA PHANTOMS-DETROIT STEELERS-
138 - 2020-01-20890DETROIT STEELERS-PINCHER CREEK WOLVERINES-
139 - 2020-01-21898DETROIT STEELERS-MANHATTAN SWEDES-
142 - 2020-01-24909DETROIT STEELERS-EDMONTON OILERS-
144 - 2020-01-26923PHILADELPHIA PHANTOMS-DETROIT STEELERS-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance25,95715,760
Attendance PCT81.12%98.50%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
26 2607 - 86.91% 71,556$1,144,895$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,144,353$ 2,081,885$ 132,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
2,081,885$ 771,591$ 33 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,860,454$ 91 21,261$ 1,934,751$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
784343304445283281242181701321132132042161603124151149268283484767117210499162703843925908682452859149718162836522.97%3517877.78%6909178950.81%903179350.36%679129752.35%1864108217357751498734
8321610001321131001316114000016048121656001315352141113192305103036444100033334131922968340331660832631.33%982574.49%134365752.21%34766652.10%26851651.94%709422673287563282
Total Regular Season1165043045773963811558292101322192180125821220325520420131093966761072211021401432037031176126612279034201199182824763669124.86%44910377.06%71252244651.19%1250245950.83%947181352.23%257315052409106320621016
Playoff
720164000007249239720000026206119200000462917327212319500222819366521924518516627185273404451124.44%791679.75%018541744.36%22946649.14%12929144.33%425252435190352167
Total Playoff20164000007249239720000026206119200000462917327212319500222819366521924518516627185273404451124.44%791679.75%018541744.36%22946649.14%12929144.33%425252435190352167