MANHATTAN SWEDES

GP: 10 | W: 4 | L: 6 | OTL: 0 | P: 8
GF: 28 | GA: 39 | PP%: 40.74% | PK%: 60.47%
GM : Justin B | Morale : 47 | Team Overall : 61
Next Games #109 vs NEWTON NIGHTHAWKS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Adam Erne (R)X100.00742476868782947939757563548976049732
2Denis Malgin (R)XX100.00392174868584897858737566598781049722
3Jack Hughes (R)X100.0012294747476756464666768687277046641
4Filip Zadina (R)XX100.0030874797977806954646257727071049642
5Aleksi Saarela (R)X100.0014499788883786567666451557967046642
6Isac Lundeström (R)XXX100.0030783807776826857585957567463049632
7Ty Dellandrea (R)X100.00523367807372766167665853556267049622
8Kirill KabanovX100.00534165657571766551676055507076049622
9Gustav NyquistX100.00888524647450756680696533477777046610
10Yegor Korshkov (R)X100.00351580797465685838585558557666049602
11Jonah Gadjovich (R)X100.00532269767265695947595757556463049602
12Dominik Bokk (R)XX100.00373072716874676354575861556960049602
13Simon Holmström (R)X100.00301277686665676543596059665865046591
14Luke SchennX100.00581499538379905140594976609093049670
15Ethan Bear (R)X100.00827650787876786554664959446860049662
16Olli JuoleviX100.00671783868079907125265761507063049661
17Gabriel Carlsson (R)X100.0048199847978766141633959407664049641
18Scott MayfieldX100.00646351608167755349473557548069049592
19Reilly Walsh (R)X100.00705073647058635940555756456160053582
Scratches
1Kole Lind (R)X100.00403881697262666141595559645761040582
2Casey CizikasX100.00162299637641656045635852547772040582
3Carl Grundström (R)X100.00473076667556615544595460566562040572
4Riley Damiani (R)X100.0016384727065625549525357496161040562
5Jonatan Berggren (R)X100.0012685707154705945555361585959040562
6Jacob Olofsson (R)X100.0015594696771685368555356606659040562
7Niklas Nordgren (R)X100.0015393766965695453555055486060037562
8Calle JarnkrokX100.00212699647650655363535257537268040562
9Brock NelsonX100.00251599607956684771485458607977040562
10Matt MartinX100.00907351627749564567454656498982040550
11Samuel Bolduc (R)X100.00585556656261626044605958465459037582
12Anttoni Honka (R)X100.0047987676364636044605559485059037582
13Oskari Laaksonen (R)X100.0037698637060635140525062446562040572
14Jack Rathbone (R)X100.00523270636756605140535060526055040562
TEAM AVERAGE100.0043267871746672605158565854706704561
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thatcher Demko (R)97.0069747382717376757676597970049722
2Joacim Eriksson100.0065616676697171687363538780049692
Scratches
1Olof Lindbom (R)100.0062636281626560636459605960040632
TEAM AVERAGE99.006566678067706969716657757004668
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Brent Sutter76788182817671CAN5411,411,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Denis MalginMANHATTAN SWEDES (MAN)C/RW108715-110016949101716.33%722222.264377210000270045.83%264107001.3500000110
2Adam ErneMANHATTAN SWEDES (MAN)LW105813-114019125317279.43%122222.2124610210000270037.70%61164001.1700000010
3Aleksi SaarelaMANHATTAN SWEDES (MAN)C10257-3004172910156.90%516316.400440160000101051.94%12992000.8500000000
4Filip ZadinaMANHATTAN SWEDES (MAN)LW/RW10156012081215696.67%321221.200113210001171037.50%800000.5700000001
5Luke SchennMANHATTAN SWEDES (MAN)D10246-2001218182611.11%1327527.51224323000035010.00%016000.4400000001
6Jack HughesMANHATTAN SWEDES (MAN)C10325000182641211.54%312412.4500001000080156.45%6256000.8000000001
7Gustav NyquistMANHATTAN SWEDES (MAN)RW10224-41953521231516.67%115015.09123215000001028.57%753000.5300010000
8Ethan BearMANHATTAN SWEDES (MAN)D10033-412031146530.00%820220.24011015000021000.00%014000.3000000100
9Gabriel CarlssonMANHATTAN SWEDES (MAN)D10123-30021264216.67%920320.35101115000022000.00%025000.2900000000
10Dominik BokkMANHATTAN SWEDES (MAN)LW/RW101230005912348.33%110910.9500000000000025.00%421000.5500000000
11Kirill KabanovMANHATTAN SWEDES (MAN)LW1012302020514667.14%011011.030000000000100.00%323000.5400000000
12Olli JuoleviMANHATTAN SWEDES (MAN)D10022-360261613650.00%1027227.29011123000031000.00%016000.1500000010
13Jonah GadjovichMANHATTAN SWEDES (MAN)LW10112-1008570314.29%2858.550000000004000.00%021000.4700000010
14Isac LundeströmMANHATTAN SWEDES (MAN)C/LW/RW10112-420315257134.00%315215.22101316000000060.00%555000.2600000000
15Ty DellandreaMANHATTAN SWEDES (MAN)C10011-1401399730.00%210010.03000000000160040.00%3544000.2000000000
16Yegor KorshkovMANHATTAN SWEDES (MAN)RW10000-100078340.00%2797.900000000000000.00%121000.0000000000
17Simon HolmströmMANHATTAN SWEDES (MAN)RW10000000000000.00%090.960000100000000.00%000000.0000000000
18Reilly WalshMANHATTAN SWEDES (MAN)D1000011210863010.00%512412.450000000004000.00%003000.0000101000
19Scott MayfieldMANHATTAN SWEDES (MAN)D100000801275010.00%212012.040000000000000.00%001000.0000000000
Team Total or Average190284775-2710115223183310931469.03%77294115.481118293019700012284246.46%5796762000.5100111243
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thatcher DemkoMANHATTAN SWEDES (MAN)104600.8694.254800134259134000.0000100200
2Joacim ErikssonMANHATTAN SWEDES (MAN)40000.9092.521190055529000.0000010000
Team Total or Average144600.8763.906000139314163000.00001010200


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam ErneMANHATTAN SWEDES (MAN)LW256/22/1995 2:32:34 AMYes193 Lbs6 ft3NoNoNo2Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$
Aleksi SaarelaMANHATTAN SWEDES (MAN)C231/7/1997 6:37:14 AMYes203 Lbs6 ft0NoNoNo2Pro & Farm500,000$438,849$40,000$35,108$50,000$43,885$No500,000$
Anttoni HonkaMANHATTAN SWEDES (MAN)D2010/5/2000 8:48:07 AMYes179 Lbs5 ft10NoNoNo3Pro & Farm500,000$438,849$40,000$35,108$50,000$43,885$No500,000$500,000$
Brock NelsonMANHATTAN SWEDES (MAN)C298/11/1991 9:10:55 AMNo216 Lbs6 ft2NoNoNo1Pro & Farm550,000$482,734$40,000$35,108$55,000$48,273$No
Calle JarnkrokMANHATTAN SWEDES (MAN)C298/9/1991 7:43:56 AMNo203 Lbs6 ft0NoNoNo2Pro & Farm600,000$526,619$40,000$35,108$60,000$52,662$No600,000$
Carl GrundströmMANHATTAN SWEDES (MAN)RW2212/1/1997 10:45:33 AMYes200 Lbs6 ft2NoNoNo5Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$650,000$650,000$650,000$
Casey CizikasMANHATTAN SWEDES (MAN)C298/9/1991 7:59:45 AMNo202 Lbs6 ft0NoNoNo1Pro & Farm375,000$329,137$40,000$35,108$37,500$32,914$No
Denis MalginMANHATTAN SWEDES (MAN)C/RW231/18/1997 2:00:56 AMYes184 Lbs5 ft9NoNoNo3Pro & Farm865,000$759,209$40,000$35,108$86,500$75,921$No865,000$865,000$
Dominik BokkMANHATTAN SWEDES (MAN)LW/RW202/3/2000 5:46:29 AMYes187 Lbs6 ft3NoNoNo2Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$
Ethan BearMANHATTAN SWEDES (MAN)D237/1/1997 3:04:39 AMYes216 Lbs6 ft1NoNoNo2Pro & Farm500,000$438,849$40,000$35,108$50,000$43,885$No500,000$
Filip ZadinaMANHATTAN SWEDES (MAN)LW/RW2011/27/1999 4:51:19 AMYes196 Lbs6 ft1NoNoNo2Pro & Farm750,000$658,273$40,000$35,108$75,000$65,827$No750,000$
Gabriel CarlssonMANHATTAN SWEDES (MAN)D231/2/1997 3:32:56 AMYes202 Lbs6 ft7NoNoNo4Pro & Farm500,000$438,849$40,000$35,108$50,000$43,885$No500,000$500,000$500,000$
Gustav NyquistMANHATTAN SWEDES (MAN)RW319/1/1989No197 Lbs5 ft11NoNoNo2Pro & Farm590,000$517,842$40,000$35,108$59,000$51,784$No590,000$
Isac LundeströmMANHATTAN SWEDES (MAN)C/LW/RW2011/6/1999 5:41:21 AMYes189 Lbs6 ft1NoNoNo2Pro & Farm750,000$658,273$40,000$35,108$75,000$65,827$No750,000$
Jack HughesMANHATTAN SWEDES (MAN)C195/14/2001 2:45:53 AMYes170 Lbs5 ft11NoNoNo3Pro & Farm750,000$658,273$750,000$658,273$75,000$65,827$No750,000$750,000$
Jack RathboneMANHATTAN SWEDES (MAN)D216/1/1999 8:54:12 AMYes207 Lbs6 ft2NoNoNo1Pro & Farm450,000$394,964$40,000$35,108$45,000$39,496$No
Jacob OlofssonMANHATTAN SWEDES (MAN)C202/8/2000 7:40:36 AMYes196 Lbs6 ft3NoNoNo2Pro & Farm550,000$482,734$40,000$35,108$55,000$48,273$No550,000$
Joacim ErikssonMANHATTAN SWEDES (MAN)G318/7/1989 4:14:33 AMNo199 Lbs6 ft0NoNoNo2Pro & Farm700,000$614,388$40,000$35,108$70,000$61,439$No700,000$
Jonah GadjovichMANHATTAN SWEDES (MAN)LW226/1/1998 7:26:42 AMYes184 Lbs6 ft1NoNoNo1Pro & Farm500,000$438,849$40,000$35,108$50,000$43,885$No
Jonatan BerggrenMANHATTAN SWEDES (MAN)RW207/16/2000 6:57:48 AMYes186 Lbs6 ft1NoNoNo2Pro & Farm600,000$526,619$40,000$35,108$60,000$52,662$No600,000$
Kirill KabanovMANHATTAN SWEDES (MAN)LW288/9/1992 8:10:16 AMNo201 Lbs6 ft2NoNoNo2Pro & Farm725,000$636,331$40,000$35,108$72,500$63,633$No725,000$
Kole LindMANHATTAN SWEDES (MAN)RW216/1/1999 1:10:23 AMYes187 Lbs6 ft1NoNoNo1Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No
Luke SchennMANHATTAN SWEDES (MAN)D3011/2/1989No246 Lbs6 ft2NoNoNo2Pro & Farm2,700,000$2,369,784$40,000$35,108$270,000$236,978$No2,700,000$
Matt MartinMANHATTAN SWEDES (MAN)LW315/8/1989No210 Lbs6 ft2NoNoNo2Pro & Farm535,000$469,568$40,000$35,108$53,500$46,957$No535,000$
Niklas NordgrenMANHATTAN SWEDES (MAN)RW205/4/2000 4:28:19 AMYes175 Lbs5 ft11NoNoNo2Pro & Farm550,000$482,734$40,000$35,108$55,000$48,273$No550,000$
Olli JuoleviMANHATTAN SWEDES (MAN)D225/5/1998 7:10:45 AMNo192 Lbs6 ft5NoNoNo5Pro & Farm750,000$658,273$40,000$35,108$75,000$65,827$No750,000$750,000$750,000$750,000$
Olof LindbomMANHATTAN SWEDES (MAN)G216/1/1999 7:08:16 AMYes224 Lbs6 ft4NoNoNo2Pro & Farm550,000$482,734$40,000$35,108$55,000$48,273$No550,000$
Oskari Laaksonen MANHATTAN SWEDES (MAN)D216/1/1999 8:30:10 AMYes206 Lbs6 ft2NoNoNo1Pro & Farm400,000$351,079$40,000$35,108$40,000$35,108$No
Reilly WalshMANHATTAN SWEDES (MAN)D216/1/1999 8:18:59 AMYes205 Lbs6 ft1NoNoNo1Pro & Farm400,000$351,079$40,000$35,108$40,000$35,108$No
Riley DamianiMANHATTAN SWEDES (MAN)C208/4/2000 2:21:27 AMYes175 Lbs5 ft11NoNoNo2Pro & Farm500,000$438,849$40,000$35,108$50,000$43,885$No500,000$
Samuel BolducMANHATTAN SWEDES (MAN)D196/1/2001 7:01:50 AMYes200 Lbs6 ft0NoNoNo3Pro & Farm550,000$482,734$40,000$35,108$55,000$48,273$No550,000$550,000$
Scott MayfieldMANHATTAN SWEDES (MAN)D2810/14/1992 11:52:05 AMNo227 Lbs6 ft3NoNoNo1Pro & Farm978,000$858,388$40,000$35,108$97,800$85,839$No
Simon HolmströmMANHATTAN SWEDES (MAN)RW195/24/2001 4:59:44 AMYes195 Lbs6 ft1NoNoNo3Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$650,000$
Thatcher DemkoMANHATTAN SWEDES (MAN)G2412/8/1995 5:01:17 AMYes215 Lbs6 ft5NoNoNo3Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$650,000$
Ty DellandreaMANHATTAN SWEDES (MAN)C207/21/2000 5:12:35 AMYes188 Lbs6 ft1NoNoNo2Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$
Yegor KorshkovMANHATTAN SWEDES (MAN)RW247/10/1996 9:17:53 AMYes187 Lbs6 ft4NoNoNo5Pro & Farm650,000$570,504$40,000$35,108$65,000$57,050$No650,000$650,000$650,000$650,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3623.31198 Lbs6 ft12.25663,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adam ErneDenis MalginFilip Zadina40122
2Isac LundeströmAleksi SaarelaGustav Nyquist30122
3Kirill KabanovJack HughesDominik Bokk20122
4Jonah GadjovichTy DellandreaYegor Korshkov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Luke SchennOlli Juolevi40122
2Ethan BearGabriel Carlsson30122
3Scott MayfieldReilly Walsh20122
4Luke SchennOlli Juolevi10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adam ErneDenis MalginFilip Zadina60122
2Isac LundeströmAleksi SaarelaGustav Nyquist40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Luke SchennOlli Juolevi60122
2Ethan BearGabriel Carlsson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Adam ErneDenis Malgin60122
2Aleksi SaarelaFilip Zadina40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Luke SchennOlli Juolevi60122
2Ethan BearGabriel Carlsson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Adam Erne60122Luke SchennOlli Juolevi60122
2Denis Malgin40122Ethan BearGabriel Carlsson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Adam ErneDenis Malgin60122
2Aleksi SaarelaFilip Zadina40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Luke SchennOlli Juolevi60122
2Ethan BearGabriel Carlsson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Adam ErneDenis MalginFilip ZadinaLuke SchennOlli Juolevi
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Adam ErneDenis MalginFilip ZadinaLuke SchennOlli Juolevi
Extra Forwards
Normal PowerPlayPenalty Kill
Simon Holmström, Jack Hughes, Ty DellandreaSimon Holmström, Jack HughesTy Dellandrea
Extra Defensemen
Normal PowerPlayPenalty Kill
Scott Mayfield, Reilly Walsh, Ethan BearScott MayfieldReilly Walsh, Ethan Bear
Penalty Shots
Adam Erne, Denis Malgin, Aleksi Saarela, Filip Zadina, Jack Hughes
Goalie
#1 : Thatcher Demko, #2 : Joacim Eriksson
Custom OT Lines Forwards
Adam Erne, Denis Malgin, Aleksi Saarela, Filip Zadina, Jack Hughes, Isac Lundeström, Isac Lundeström, Ty Dellandrea, Kirill Kabanov, Gustav Nyquist, Jonah Gadjovich
Custom OT Lines Defensemen
Luke Schenn, Olli Juolevi, Ethan Bear, Gabriel Carlsson, Scott Mayfield


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total1036010002839-11523000001721-4513010001118-780.4002847750141310131089117103131477101223271140.74%431760.47%09521344.60%9421443.93%8015152.98%2091192169117583
_Since Last GM Reset1036010002839-11523000001721-4513010001118-780.4002847750141310131089117103131477101223271140.74%431760.47%09521344.60%9421443.93%8015152.98%2091192169117583
_Vs Conference825010002333-10413000001419-541201000914-560.37523396201413101241891171031256568317322836.36%341361.76%09521344.60%9421443.93%8015152.98%2091192169117583
_Vs Division41300000915-630300000815-71100000010120.25091524014131011238911710311243137909222.22%11463.64%09521344.60%9421443.93%8015152.98%2091192169117583

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
108W12847753103147710122301
All Games
GPWLOTWOTL SOWSOLGFGA
103610002839
Home Games
GPWLOTWOTL SOWSOLGFGA
52300001721
Visitor Games
GPWLOTWOTL SOWSOLGFGA
51310001118
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
271140.74%431760.47%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
891171031413101
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
9521344.60%9421443.93%8015152.98%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2091192169117583


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-09-081MANHATTAN SWEDES1NEWTON NIGHTHAWKS0WBoxScore
3 - 2020-09-1016NEWTON NIGHTHAWKS6MANHATTAN SWEDES2LBoxScore
5 - 2020-09-1229NEWTON NIGHTHAWKS4MANHATTAN SWEDES3LBoxScore
7 - 2020-09-1440MANHATTAN SWEDES2SYRACUSE BABY BULLS7LR5BoxScore
8 - 2020-09-1550CALGARY WRANGLERS2MANHATTAN SWEDES3WBoxScore
10 - 2020-09-1763MANHATTAN SWEDES2CALGARY WRANGLERS4LBoxScore
11 - 2020-09-1865MANHATTAN SWEDES3HALIFAX HELL5LBoxScore
12 - 2020-09-1981MANHATTAN SWEDES3HAWAII PUNCH2WXBoxScore
14 - 2020-09-2188NEWTON NIGHTHAWKS5MANHATTAN SWEDES3LBoxScore
16 - 2020-09-23100HAWAII PUNCH4MANHATTAN SWEDES6WBoxScore
18 - 2020-09-25109MANHATTAN SWEDES-NEWTON NIGHTHAWKS-
20 - 2020-09-27124VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-
21 - 2020-09-28133MANHATTAN SWEDES-EDMONTON OILERS-
23 - 2020-09-30147COQUITLAM EXPRESS-MANHATTAN SWEDES-
25 - 2020-10-02160PINCHER CREEK WOLVERINES-MANHATTAN SWEDES-
26 - 2020-10-03169MANHATTAN SWEDES-EDMONTON OILERS-
27 - 2020-10-04176MANHATTAN SWEDES-HALIFAX HELL-
29 - 2020-10-06190LAS CRUCES MESCALEROS-MANHATTAN SWEDES-
30 - 2020-10-07201MANHATTAN SWEDES-NORTH VAN ROCKERS-
32 - 2020-10-09209HAWAII PUNCH-MANHATTAN SWEDES-
34 - 2020-10-11220MANHATTAN SWEDES-SYRACUSE BABY BULLS-
35 - 2020-10-12234MANHATTAN SWEDES-HALIFAX HELL-
36 - 2020-10-13240COQUITLAM EXPRESS-MANHATTAN SWEDES-
38 - 2020-10-15254HALIFAX HELL-MANHATTAN SWEDES-
41 - 2020-10-18269CAPE FEAR WILDCATS-MANHATTAN SWEDES-
43 - 2020-10-20280MANHATTAN SWEDES-BROOKLYN GRINDERS-
44 - 2020-10-21289MANHATTAN SWEDES-PHILADELPHIA PHANTOMS-
46 - 2020-10-23301VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-
47 - 2020-10-24311NEWTON NIGHTHAWKS-MANHATTAN SWEDES-
49 - 2020-10-26324MANHATTAN SWEDES-DETROIT STEELERS-
50 - 2020-10-27332MANHATTAN SWEDES-PENSACOLA BLACK BEARS-
51 - 2020-10-28343HAWAII PUNCH-MANHATTAN SWEDES-
53 - 2020-10-30354MANHATTAN SWEDES-PHILADELPHIA PHANTOMS-
54 - 2020-10-31364MANHATTAN SWEDES-BANGOR PUPPIES-
56 - 2020-11-02373NORTH VAN ROCKERS-MANHATTAN SWEDES-
58 - 2020-11-04387EDMONTON OILERS-MANHATTAN SWEDES-
61 - 2020-11-07402MANHATTAN SWEDES-LAS CRUCES MESCALEROS-
62 - 2020-11-08411NEWTON NIGHTHAWKS-MANHATTAN SWEDES-
64 - 2020-11-10424MANHATTAN SWEDES-COQUITLAM EXPRESS-
67 - 2020-11-13435PINCHER CREEK WOLVERINES-MANHATTAN SWEDES-
68 - 2020-11-14448SYRACUSE BABY BULLS-MANHATTAN SWEDES-
71 - 2020-11-17459MANHATTAN SWEDES-SYRACUSE BABY BULLS-
73 - 2020-11-19471CAPE BRETON LEPRECHAUNS-MANHATTAN SWEDES-
74 - 2020-11-20480MANHATTAN SWEDES-CHICAGO UNDERTAKERS-
75 - 2020-11-21489LAS CRUCES MESCALEROS-MANHATTAN SWEDES-
77 - 2020-11-23501MANHATTAN SWEDES-NEWTON NIGHTHAWKS-
78 - 2020-11-24513CHICAGO UNDERTAKERS-MANHATTAN SWEDES-
80 - 2020-11-26524MANHATTAN SWEDES-HALIFAX HELL-
81 - 2020-11-27537CAPE FEAR WILDCATS-MANHATTAN SWEDES-
83 - 2020-11-29544MANHATTAN SWEDES-COQUITLAM EXPRESS-
84 - 2020-11-30556MANHATTAN SWEDES-CAPE FEAR WILDCATS-
86 - 2020-12-02566PINCHER CREEK WOLVERINES-MANHATTAN SWEDES-
88 - 2020-12-04581DETROIT STEELERS-MANHATTAN SWEDES-
89 - 2020-12-05588MANHATTAN SWEDES-PINCHER CREEK WOLVERINES-
91 - 2020-12-07601VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-
92 - 2020-12-08613MANHATTAN SWEDES-SAN JOSE AVACADOES-
94 - 2020-12-10623COQUITLAM EXPRESS-MANHATTAN SWEDES-
97 - 2020-12-13642BROOKLYN GRINDERS-MANHATTAN SWEDES-
98 - 2020-12-14656PENSACOLA BLACK BEARS-MANHATTAN SWEDES-
99 - 2020-12-15664MANHATTAN SWEDES-LAS CRUCES MESCALEROS-
101 - 2020-12-17676MANHATTAN SWEDES-VANCOUVER THOUSANDAIRES-
102 - 2020-12-18685NEWTON NIGHTHAWKS-MANHATTAN SWEDES-
105 - 2020-12-21704MANHATTAN SWEDES-CAPE FEAR WILDCATS-
106 - 2020-12-22706MANHATTAN SWEDES-CALGARY WRANGLERS-
107 - 2020-12-23714BANGOR PUPPIES-MANHATTAN SWEDES-
109 - 2020-12-25730HALIFAX HELL-MANHATTAN SWEDES-
111 - 2020-12-27743MANHATTAN SWEDES-COLORADO CUBS-
112 - 2020-12-28750MANHATTAN SWEDES-EDMONTON OILERS-
114 - 2020-12-30759EDMONTON OILERS-MANHATTAN SWEDES-
Trade Deadline --- Trades can’t be done after this day is simulated!
116 - 2021-01-01775CALGARY WRANGLERS-MANHATTAN SWEDES-
117 - 2021-01-02786MANHATTAN SWEDES-CAPE BRETON LEPRECHAUNS-
119 - 2021-01-04798SAN JOSE AVACADOES-MANHATTAN SWEDES-
121 - 2021-01-06811MANHATTAN SWEDES-NEWTON NIGHTHAWKS-
122 - 2021-01-07814MANHATTAN SWEDES-VANCOUVER THOUSANDAIRES-
123 - 2021-01-08824NORTH VAN ROCKERS-MANHATTAN SWEDES-
125 - 2021-01-10840COLORADO CUBS-MANHATTAN SWEDES-
127 - 2021-01-12849MANHATTAN SWEDES-HAWAII PUNCH-
129 - 2021-01-14860MANHATTAN SWEDES-LAS CRUCES MESCALEROS-
130 - 2021-01-15868PHILADELPHIA PHANTOMS-MANHATTAN SWEDES-
132 - 2021-01-17882SYRACUSE BABY BULLS-MANHATTAN SWEDES-
133 - 2021-01-18888MANHATTAN SWEDES-CAPE FEAR WILDCATS-
135 - 2021-01-20903MANHATTAN SWEDES-DETROIT STEELERS-
136 - 2021-01-21906MANHATTAN SWEDES-PINCHER CREEK WOLVERINES-
138 - 2021-01-23923SYRACUSE BABY BULLS-MANHATTAN SWEDES-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance8,1874,970
Attendance PCT81.87%99.40%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
37 2631 - 87.71% 72,219$361,095$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
464,474$ 2,386,800$ 215,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
2,386,800$ 291,907$ 36 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,672,103$ 122 27,322$ 3,333,284$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
884244605126236310-7442132401004117164-4742112204122119146-27482363816174143889810229765280082744259688277914752596826.25%3148772.29%5824159051.82%912171753.12%642123052.20%167188918468031567775
91036010002839-11523000001721-4513010001118-782847750141310131089117103131477101223271140.74%431760.47%09521344.60%9421443.93%8015152.98%2091192169117583
Total Regular Season94275206126264349-8547152701004134185-5147122505122130164-3456264428692424710110811260774191793045291095988016982867927.62%35710470.87%5919180350.97%1006193152.10%722138152.28%1880100920638941742858