MANHATTAN SWEDES

GP: 50 | W: 19 | L: 30 | OTL: 1 | P: 39
GF: 120 | GA: 179 | PP%: 23.61% | PK%: 70.79%
GM : Justin B | Morale : 34 | Team Overall : 62
Next Games #528 vs EDMONTON OILERS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Joshua Ho-SangXX98.00805359838487867459737257587969049712
2Dylan Strome (R)X96.0030499868484857777746655608578046701
3Elias Pettersson (R)XX98.00452176847986847656697160577572043691
4Kirill KabanovX100.00483670677670766651676159506874041632
5Filip Zadina (R)XX100.00321072726970676554646259726970036622
6Gustav NyquistX100.00838029647349756780706636477575046610
7Ty Dellandrea (R)X100.00523367656862646367686057556065036602
8Yegor Korshkov (R)X100.00391976727467685940595658557363028592
9Carl Grundström (R)X100.00523571667558615845625759566360035592
10Kyle OkposoX100.00432790587772815559494358698892024580
11Griffin ReinhartX100.00603076748179798241716467467469050692
12Olli JuoleviX100.00681882838583907030255665506962043671
13Luke SchennX100.00611799548379904940584877608689045670
14Johan FranzenXX100.00321999717269735148555271649994031642
15Gabriel Carlsson (R)X100.0053199837874766141553360406562046631
16Timothy Liljegren (R)X100.00721968647367705735575459566466046611
17Scott MayfieldX100.00646351598070755749513959547867046602
18Reilly Walsh (R)X100.00745469636561635740535556455857023582
Scratches
1Joel Eriksson Ek (R)XX93.6025399858484827771726859588377032701
2Jonah Gadjovich (R)X100.00572665696760606248595857555661024582
3Dominik Bokk (R)XX100.00413468696368676055605660556358025582
4Casey CizikasX100.00212799637343656046635852547469019572
5Brock NelsonX100.00302099617760685271535958607775019572
6Kole Lind (R)X100.00403881656962666141595559645559020572
7Jonatan Berggren (R)X100.00171180666658706444605861585858020572
8Calle JarnkrokX100.00212699627650655363535257537167020552
9Matt MartinX100.00907351637649564567454656498679020550
10Anders LeeXX100.00262084617961654242525250488774020542
11Erik Brännström (R)X86.3242593747873746440664964426659025631
12Jack Rathbone (R)X100.00563666656258605640585560525752020572
TEAM AVERAGE99.0648297869756772615159565955726903361
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joacim Eriksson97.0065616676697069667163538386047682
2Olof Lindbom (R)100.0067636276636464626359605657036622
Scratches
TEAM AVERAGE98.506662647666676764676157707204265
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Brent Sutter71767883797473CAN5321,411,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joel Eriksson EkMANHATTAN SWEDES (MAN)C/LW48173148-9403781181691129.39%31105221.93414182212200061312056.46%4185215000.9101000331
2Joshua Ho-SangMANHATTAN SWEDES (MAN)C/RW45202747-51121010380170429811.76%20105023.3571017231110002874349.87%7524320010.8902101424
3Elias PetterssonMANHATTAN SWEDES (MAN)C/RW50172239-162756867140389012.14%2196719.357714191150003580348.32%1493121010.8111010212
4Dylan StromeMANHATTAN SWEDES (MAN)C50132033-1900318917240947.56%28101720.355914189100031202156.63%7015720000.6502000320
5Griffin ReinhartMANHATTAN SWEDES (MAN)D5042226-22341073989333524.30%79131426.30279141340004150000.00%03135000.4001101120
6Kirill KabanovMANHATTAN SWEDES (MAN)LW4610919-216915666282144612.20%1977016.75325986000012051.72%29816000.4900003012
7Gustav NyquistMANHATTAN SWEDES (MAN)RW506814-138515103389034556.67%1770214.050000221011120053.33%45208000.4000101111
8Filip ZadinaMANHATTAN SWEDES (MAN)LW/RW457613-1718047587726459.09%3078317.4121310640113463060.00%252411000.3300000102
9Olli JuoleviMANHATTAN SWEDES (MAN)D503912-2119574684420206.82%71118423.7013441290000142000.00%1333100.2001010000
10Ty DellandreaMANHATTAN SWEDES (MAN)C455611-1110041546818277.35%1059913.3200003000161049.41%2551012000.3700000110
11Johan FranzenMANHATTAN SWEDES (MAN)LW/D432810-80013634412184.55%3181318.920222900001801068.75%16827000.2511000100
12Gabriel CarlssonMANHATTAN SWEDES (MAN)D50246000123817121411.76%2169813.96213334000120100.00%0314000.1700000000
13Eric NystromMANHATTAN ISLANDERSC/LW/RW5235-360108259108.00%412224.46112316000070045.04%13124000.8200000010
14Luke SchennMANHATTAN SWEDES (MAN)D45055-711535744310180.00%5290020.020114860001109000.00%0526000.1100100010
15Carl GrundströmMANHATTAN SWEDES (MAN)RW4423514024202071710.00%103387.70000010000160040.91%2252000.3000000000
16Jonah GadjovichMANHATTAN SWEDES (MAN)LW29235-28017232910186.90%734912.06000000001200042.31%2655000.2900000000
17Dominik BokkMANHATTAN SWEDES (MAN)LW/RW3723506014223613175.56%93389.16000000000191032.14%2814000.3000000002
18Yegor KorshkovMANHATTAN SWEDES (MAN)RW26213-160137112618.18%61937.4400002000000050.00%445100.3100000000
19Mathew BarzalMANHATTAN ISLANDERSC5202-50016205710.00%19519.09000111000091045.00%6032000.4200000001
20Erik BrännströmMANHATTAN SWEDES (MAN)D46022-320639141080.00%2555912.16000012000019000.00%0220000.0700000000
21Timothy LiljegrenMANHATTAN SWEDES (MAN)D50011-17100362111370.00%204879.7600000000015000.00%0213000.0400000000
22Casey CizikasMANHATTAN SWEDES (MAN)C5101-1000120150.00%0336.7300000000000033.33%1210000.5900000000
23Reilly WalshMANHATTAN SWEDES (MAN)D8000-220211000.00%1486.110000000000000.00%000000.0000000000
24Scott MayfieldMANHATTAN SWEDES (MAN)D50000-1012014170110.00%62795.580000000002000.00%001000.0000000000
25Kyle OkposoMANHATTAN SWEDES (MAN)RW2000-100010000.00%0189.090000000000000.00%300000.0000000000
26Jonatan BerggrenMANHATTAN SWEDES (MAN)RW6000000000000.00%0162.6800000000000060.00%500000.0000000000
27Brock NelsonMANHATTAN SWEDES (MAN)C5000200210000.00%0142.9200000000000050.00%200000.0000000000
Team Total or Average935119193312-21144565842103713904287818.56%5191475315.78345892132114111227107718752.01%2684320314220.4229426171515
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joacim ErikssonMANHATTAN SWEDES (MAN)37151800.8853.39189401107933482020.75043511211
2Thatcher DemkoMANHATTAN ISLANDERS93510.9083.195260028304170000.500290000
3Olof LindbomMANHATTAN SWEDES (MAN)141700.8594.105860040284159010.0000639000
Team Total or Average60193010.8853.493006011751521811030.66765050211


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anders LeeMANHATTAN SWEDES (MAN)C/LW297/3/1990 9:13:24 AMNo220 Lbs6 ft3NoNoNo1Pro & Farm900,000$403,448$40,000$17,931$90,000$40,345$No
Brock NelsonMANHATTAN SWEDES (MAN)C288/11/1991 9:10:55 AMNo214 Lbs6 ft2NoNoNo2Pro & Farm550,000$246,552$40,000$17,931$55,000$24,655$No550,000$
Calle JarnkrokMANHATTAN SWEDES (MAN)C288/9/1991 7:43:56 AMNo203 Lbs6 ft0NoNoNo3Pro & Farm600,000$268,966$40,000$17,931$60,000$26,897$No600,000$600,000$
Carl GrundströmMANHATTAN SWEDES (MAN)RW2212/1/1997 10:45:33 AMYes198 Lbs6 ft2NoNoNo1Pro & Farm400,000$179,310$40,000$17,931$40,000$17,931$No
Casey CizikasMANHATTAN SWEDES (MAN)C288/9/1991 7:59:45 AMNo200 Lbs6 ft0NoNoNo2Pro & Farm375,000$168,103$40,000$17,931$37,500$16,810$No375,000$
Dominik BokkMANHATTAN SWEDES (MAN)LW/RW192/3/2000 5:46:29 AMYes181 Lbs6 ft1NoNoNo3Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No650,000$650,000$
Dylan StromeMANHATTAN SWEDES (MAN)C223/7/1997 1:53:36 AMYes207 Lbs6 ft4NoNoNo5Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$750,000$750,000$750,000$Link
Elias PetterssonMANHATTAN SWEDES (MAN)C/RW2111/12/1998 4:39:18 AMYes182 Lbs6 ft4NoNoNo2Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$
Erik BrännströmMANHATTAN SWEDES (MAN)D209/2/1999 5:22:21 AMYes186 Lbs5 ft10NoNoNo2Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$
Filip ZadinaMANHATTAN SWEDES (MAN)LW/RW2011/27/1999 4:51:19 AMYes192 Lbs6 ft1NoNoNo3Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$750,000$
Gabriel CarlssonMANHATTAN SWEDES (MAN)D231/2/1997 3:32:56 AMYes200 Lbs6 ft7NoNoNo5Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No500,000$500,000$500,000$500,000$
Griffin ReinhartMANHATTAN SWEDES (MAN)D251/24/1994 3:22:57 AMNo226 Lbs6 ft5NoNoNo2Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$
Gustav NyquistMANHATTAN SWEDES (MAN)RW309/1/1989No197 Lbs5 ft11NoNoNo3Pro & Farm590,000$264,483$40,000$17,931$59,000$26,448$No590,000$590,000$
Jack RathboneMANHATTAN SWEDES (MAN)D206/1/1999 8:54:12 AMYes203 Lbs6 ft1NoNoNo2Pro & Farm450,000$201,724$40,000$17,931$45,000$20,172$No450,000$
Joacim ErikssonMANHATTAN SWEDES (MAN)G308/7/1989 4:14:33 AMNo198 Lbs6 ft0NoNoNo3Pro & Farm700,000$313,793$40,000$17,931$70,000$31,379$No700,000$700,000$
Joel Eriksson EkMANHATTAN SWEDES (MAN)C/LW221/29/1997 3:04:05 AMYes198 Lbs6 ft5NoNoNo5Pro & Farm700,000$313,793$40,000$17,931$70,000$31,379$No700,000$700,000$700,000$700,000$
Johan FranzenMANHATTAN SWEDES (MAN)LW/D407/27/1979 6:22:35 AMNo182 Lbs6 ft0NoNoNo1Pro & Farm2,654,568$1,189,979$265,457$118,998$No
Jonah GadjovichMANHATTAN SWEDES (MAN)LW216/1/1998 7:26:42 AMYes182 Lbs6 ft1NoNoNo2Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No500,000$
Jonatan BerggrenMANHATTAN SWEDES (MAN)RW197/16/2000 6:57:48 AMYes183 Lbs5 ft11NoNoNo3Pro & Farm600,000$268,966$40,000$17,931$60,000$26,897$No600,000$600,000$
Joshua Ho-SangMANHATTAN SWEDES (MAN)C/RW231/22/1996 2:27:44 AMNo184 Lbs6 ft3NoNoNo4Pro & Farm675,000$302,586$40,000$17,931$67,500$30,259$No675,000$675,000$675,000$
Kirill KabanovMANHATTAN SWEDES (MAN)LW278/9/1992 8:10:16 AMNo199 Lbs6 ft2NoNoNo3Pro & Farm725,000$325,000$40,000$17,931$72,500$32,500$No725,000$725,000$
Kole LindMANHATTAN SWEDES (MAN)RW206/1/1999 1:10:23 AMYes185 Lbs6 ft1NoNoNo2Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No650,000$
Kyle OkposoMANHATTAN SWEDES (MAN)RW314/16/1988No219 Lbs6 ft0NoNoNo1Pro & Farm550,000$246,552$55,000$24,655$No
Luke SchennMANHATTAN SWEDES (MAN)D3011/2/1989No246 Lbs6 ft2NoNoNo3Pro & Farm2,700,000$1,210,345$40,000$17,931$270,000$121,034$No2,700,000$2,700,000$
Matt MartinMANHATTAN SWEDES (MAN)LW305/8/1989No208 Lbs6 ft2NoNoNo3Pro & Farm535,000$239,828$40,000$17,931$53,500$23,983$No535,000$535,000$
Olli JuoleviMANHATTAN SWEDES (MAN)D215/5/1998 7:10:45 AMNo189 Lbs6 ft5NoNoNo1Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No
Olof LindbomMANHATTAN SWEDES (MAN)G206/1/1999 7:08:16 AMYes220 Lbs6 ft2NoNoNo3Pro & Farm550,000$246,552$40,000$17,931$55,000$24,655$No550,000$550,000$
Reilly WalshMANHATTAN SWEDES (MAN)D206/1/1999 8:18:59 AMYes202 Lbs6 ft1NoNoNo2Pro & Farm400,000$179,310$40,000$17,931$40,000$17,931$No400,000$
Scott MayfieldMANHATTAN SWEDES (MAN)D2710/14/1992 11:52:05 AMNo226 Lbs6 ft3NoNoNo2Pro & Farm978,000$438,414$40,000$17,931$97,800$43,841$No978,000$
Timothy LiljegrenMANHATTAN SWEDES (MAN)D204/30/1999 5:25:49 AMYes203 Lbs6 ft1NoNoNo2Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$
Ty DellandreaMANHATTAN SWEDES (MAN)C197/21/2000 5:12:35 AMYes183 Lbs6 ft0NoNoNo3Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No650,000$650,000$
Yegor KorshkovMANHATTAN SWEDES (MAN)RW237/10/1996 9:17:53 AMYes185 Lbs6 ft4NoNoNo1Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3224.31200 Lbs6 ft22.50765,080$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Johan FranzenDylan StromeJoshua Ho-Sang40122
2Kirill KabanovElias PetterssonFilip Zadina30122
3Dylan StromeTy DellandreaGustav Nyquist20122
4Elias PetterssonJoshua Ho-SangYegor Korshkov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi40122
2Luke SchennGabriel Carlsson30122
3Timothy Liljegren20122
4Scott MayfieldReilly Walsh10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Johan FranzenDylan StromeJoshua Ho-Sang60122
2Kirill KabanovElias PetterssonFilip Zadina40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi60122
2Luke SchennGabriel Carlsson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dylan StromeJoshua Ho-Sang60122
2Elias PetterssonKirill Kabanov40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi60122
2Luke SchennJohan Franzen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dylan Strome60122Griffin ReinhartOlli Juolevi60122
2Joshua Ho-Sang40122Luke SchennJohan Franzen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dylan StromeJoshua Ho-Sang60122
2Elias PetterssonKirill Kabanov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi60122
2Luke SchennJohan Franzen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Johan FranzenDylan StromeJoshua Ho-SangGriffin ReinhartOlli Juolevi
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Johan FranzenDylan StromeJoshua Ho-SangGriffin ReinhartOlli Juolevi
Extra Forwards
Normal PowerPlayPenalty Kill
Kyle Okposo, Carl Grundström, Gustav NyquistKyle Okposo, Carl GrundströmGustav Nyquist
Extra Defensemen
Normal PowerPlayPenalty Kill
, Timothy Liljegren, Scott MayfieldTimothy Liljegren, Scott Mayfield
Penalty Shots
Dylan Strome, Joshua Ho-Sang, Elias Pettersson, Johan Franzen, Kirill Kabanov
Goalie
#1 : Joacim Eriksson, #2 : Olof Lindbom
Custom OT Lines Forwards
Dylan Strome, Joshua Ho-Sang, Elias Pettersson, Johan Franzen, Kirill Kabanov, Filip Zadina, Filip Zadina, Gustav Nyquist, Ty Dellandrea, Yegor Korshkov, Kyle Okposo
Custom OT Lines Defensemen
Griffin Reinhart, Olli Juolevi, Luke Schenn, Johan Franzen, Gabriel Carlsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total50153003011120179-5923617000004892-4427913030117287-15390.39012019331331215243513904104744981515245194458421443423.61%1785270.79%148694851.27%531100852.68%37971852.79%10025441089474919454
_Since Last GM Reset50153003011120179-5923617000004892-4427913030117287-15390.39012019331331215243513904104744981515245194458421443423.61%1785270.79%148694851.27%531100852.68%37971852.79%10025441089474919454
_Vs Conference3514180201090115-251266000003040-1023812020106075-15340.486901502402121524359904104744981510673512635891072826.17%1102874.55%148694851.27%531100852.68%37971852.79%10025441089474919454
_Vs Division22812020005571-16945000002329-61347020003242-10200.45555901451121524356424104744981568222815337159915.25%651478.46%048694851.27%531100852.68%37971852.79%10025441089474919454

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5039W21201933131390152451944584231
All Games
GPWLOTWOTL SOWSOLGFGA
5015303011120179
Home Games
GPWLOTWOTL SOWSOLGFGA
2361700004892
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2791330117287
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1443423.61%1785270.79%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
410474498152152435
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
48694851.27%531100852.68%37971852.79%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10025441089474919454


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-09-052NEWTON NIGHTHAWKS2MANHATTAN SWEDES3WBoxScore
3 - 2019-09-0717MANHATTAN SWEDES4VANCOUVER THOUSANDAIRES3WXBoxScore
5 - 2019-09-0928MANHATTAN SWEDES1EDMONTON OILERS3LBoxScore
6 - 2019-09-1037CAPE FEAR WILDCATS5MANHATTAN SWEDES1LBoxScore
8 - 2019-09-1249MANHATTAN SWEDES1HALIFAX HELL3LBoxScore
9 - 2019-09-1356NEWTON NIGHTHAWKS2MANHATTAN SWEDES4WBoxScore
11 - 2019-09-1571MANHATTAN SWEDES2EDMONTON OILERS4LBoxScore
12 - 2019-09-1678EDMONTON OILERS5MANHATTAN SWEDES4LBoxScore
14 - 2019-09-1891MANHATTAN SWEDES3VANCOUVER THOUSANDAIRES2WXBoxScore
16 - 2019-09-20102LAS CRUCES MESCALEROS2MANHATTAN SWEDES3WBoxScore
18 - 2019-09-22116VANCOUVER THOUSANDAIRES6MANHATTAN SWEDES2LBoxScore
20 - 2019-09-24127MANHATTAN SWEDES4PHILADELPHIA PHANTOMS3WXBoxScore
21 - 2019-09-25133MANHATTAN SWEDES3CAPE FEAR WILDCATS2WBoxScore
22 - 2019-09-26143MANHATTAN SWEDES1NEWTON NIGHTHAWKS4LBoxScore
23 - 2019-09-27149CAPE FEAR WILDCATS2MANHATTAN SWEDES4WBoxScore
25 - 2019-09-29165BROOKLYN GRINDERS3MANHATTAN SWEDES2LBoxScore
27 - 2019-10-01177MANHATTAN SWEDES2COLORADO CUBS4LBoxScore
28 - 2019-10-02186MANHATTAN SWEDES3PHILADELPHIA PHANTOMS4LXXBoxScore
30 - 2019-10-04195SAN JOSE AVACADOES8MANHATTAN SWEDES1LBoxScore
32 - 2019-10-06209MANHATTAN SWEDES4SYRACUSE BABY BULLS7LR5BoxScore
33 - 2019-10-07215CHICAGO UNDERTAKERS3MANHATTAN SWEDES1LBoxScore
34 - 2019-10-08226MANHATTAN SWEDES5HALIFAX HELL3WBoxScore
36 - 2019-10-10236NORTH VAN ROCKERS6MANHATTAN SWEDES1LBoxScore
38 - 2019-10-12248MANHATTAN SWEDES2LAS CRUCES MESCALEROS4LBoxScore
39 - 2019-10-13259BANGOR PUPPIES6MANHATTAN SWEDES3LBoxScore
41 - 2019-10-15270MANHATTAN SWEDES2HALIFAX HELL7LBoxScore
43 - 2019-10-17280EDMONTON OILERS0MANHATTAN SWEDES2WBoxScore
44 - 2019-10-18291MANHATTAN SWEDES2EDMONTON OILERS4LBoxScore
45 - 2019-10-19297MANHATTAN SWEDES1PINCHER CREEK WOLVERINES2LBoxScore
47 - 2019-10-21306PINCHER CREEK WOLVERINES7MANHATTAN SWEDES1LBoxScore
49 - 2019-10-23321BROOKLYN GRINDERS4MANHATTAN SWEDES1LBoxScore
52 - 2019-10-26338MANHATTAN SWEDES4NEWTON NIGHTHAWKS3WBoxScore
53 - 2019-10-27344MANHATTAN SWEDES4HAWAII PUNCH2WBoxScore
54 - 2019-10-28351CALGARY WRANGLERS4MANHATTAN SWEDES2LBoxScore
56 - 2019-10-30367CAPE BRETON LEPRECHAUNS3MANHATTAN SWEDES1LBoxScore
58 - 2019-11-01378MANHATTAN SWEDES4VANCOUVER THOUSANDAIRES2WBoxScore
60 - 2019-11-03391COLORADO CUBS5MANHATTAN SWEDES1LBoxScore
61 - 2019-11-04402MANHATTAN SWEDES1CAPE FEAR WILDCATS7LBoxScore
63 - 2019-11-06410MANHATTAN SWEDES3DETROIT STEELERS1WBoxScore
64 - 2019-11-07416CAPE FEAR WILDCATS3MANHATTAN SWEDES1LBoxScore
66 - 2019-11-09431MANHATTAN SWEDES4CAPE FEAR WILDCATS2WBoxScore
67 - 2019-11-10437BROOKLYN GRINDERS6MANHATTAN SWEDES4LBoxScore
69 - 2019-11-12449MANHATTAN SWEDES2VANCOUVER THOUSANDAIRES3LBoxScore
70 - 2019-11-13460PINCHER CREEK WOLVERINES2MANHATTAN SWEDES3WBoxScore
72 - 2019-11-15476MANHATTAN SWEDES2LAS CRUCES MESCALEROS1WBoxScore
73 - 2019-11-16483NEWTON NIGHTHAWKS4MANHATTAN SWEDES2LBoxScore
75 - 2019-11-18496MANHATTAN SWEDES1EDMONTON OILERS3LBoxScore
76 - 2019-11-19504CAPE BRETON LEPRECHAUNS4MANHATTAN SWEDES1LBoxScore
79 - 2019-11-22519MANHATTAN SWEDES2PINCHER CREEK WOLVERINES1WXXBoxScore
80 - 2019-11-23523MANHATTAN SWEDES5COQUITLAM EXPRESS3WBoxScore
81 - 2019-11-24528EDMONTON OILERS-MANHATTAN SWEDES-
84 - 2019-11-27549VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-
86 - 2019-11-29561MANHATTAN SWEDES-PENSACOLA BLACK BEARS-
88 - 2019-12-01571VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-
90 - 2019-12-03585MANHATTAN SWEDES-CHICAGO UNDERTAKERS-
91 - 2019-12-04593CHICAGO UNDERTAKERS-MANHATTAN SWEDES-
92 - 2019-12-05597MANHATTAN SWEDES-SYRACUSE BABY BULLS-
94 - 2019-12-07615NEWTON NIGHTHAWKS-MANHATTAN SWEDES-
95 - 2019-12-08619MANHATTAN SWEDES-SAN JOSE AVACADOES-
97 - 2019-12-10637HAWAII PUNCH-MANHATTAN SWEDES-
98 - 2019-12-11646MANHATTAN SWEDES-COQUITLAM EXPRESS-
100 - 2019-12-13655MANHATTAN SWEDES-HAWAII PUNCH-
101 - 2019-12-14664PHILADELPHIA PHANTOMS-MANHATTAN SWEDES-
103 - 2019-12-16679MANHATTAN SWEDES-BANGOR PUPPIES-
104 - 2019-12-17683HALIFAX HELL-MANHATTAN SWEDES-
107 - 2019-12-20703SYRACUSE BABY BULLS-MANHATTAN SWEDES-
108 - 2019-12-21710MANHATTAN SWEDES-CALGARY WRANGLERS-
109 - 2019-12-22723COQUITLAM EXPRESS-MANHATTAN SWEDES-
111 - 2019-12-24732MANHATTAN SWEDES-BROOKLYN GRINDERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-12-26746PENSACOLA BLACK BEARS-MANHATTAN SWEDES-
114 - 2019-12-27753MANHATTAN SWEDES-CAPE BRETON LEPRECHAUNS-
116 - 2019-12-29767LAS CRUCES MESCALEROS-MANHATTAN SWEDES-
118 - 2019-12-31779MANHATTAN SWEDES-DETROIT STEELERS-
119 - 2020-01-01788CAPE FEAR WILDCATS-MANHATTAN SWEDES-
121 - 2020-01-03797MANHATTAN SWEDES-NEWTON NIGHTHAWKS-
122 - 2020-01-04810LAS CRUCES MESCALEROS-MANHATTAN SWEDES-
124 - 2020-01-06817MANHATTAN SWEDES-NORTH VAN ROCKERS-
127 - 2020-01-09834HAWAII PUNCH-MANHATTAN SWEDES-
130 - 2020-01-12846MANHATTAN SWEDES-PHILADELPHIA PHANTOMS-
132 - 2020-01-14856HALIFAX HELL-MANHATTAN SWEDES-
134 - 2020-01-16874SYRACUSE BABY BULLS-MANHATTAN SWEDES-
139 - 2020-01-21898DETROIT STEELERS-MANHATTAN SWEDES-
140 - 2020-01-22903MANHATTAN SWEDES-COLORADO CUBS-
144 - 2020-01-26920COQUITLAM EXPRESS-MANHATTAN SWEDES-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance37,22122,333
Attendance PCT80.92%97.10%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
19 2589 - 86.31% 71,206$1,637,730$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,114,001$ 2,448,257$ 120,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
2,448,257$ 1,335,521$ 32 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,352,907$ 65 26,616$ 1,730,040$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
784224005656240313-7342121603542136162-2642102402114104151-474424038162122595711416226170169381488261582784116722385221.85%3188473.58%6773155649.68%840171249.07%575121447.36%166789018498211602776
850153003011120179-5923617000004892-4427913030117287-153912019331331215243513904104744981515245194458421443423.61%1785270.79%148694851.27%531100852.68%37971852.79%10025441089474919454
Total Regular Season134377008667360492-13265183303542184254-7069193705125176238-6283360574934538010915721365111111167131210341391346128625143828622.51%49613672.58%71259250450.28%1371272050.40%954193249.38%267014342939129525221231