MANHATTAN SWEDES

GP: 20 | W: 8 | L: 11 | OTL: 1 | P: 17
GF: 52 | GA: 74 | PP%: 21.15% | PK%: 71.43%
GM : Justin B | Morale : 44 | Team Overall : 62
Next Games #215 vs CHICAGO UNDERTAKERS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Joshua Ho-SangXX99.00805359838487867459737257587969049712
2Dylan Strome (R)X100.0030499868484857777746655608578049701
3Joel Eriksson Ek (R)XX99.0025399858484827771726859588377049701
4Elias Pettersson (R)XX100.00452176847986847656697160577572049691
5Kirill KabanovX100.00483670677670766651676159506874050632
6Filip Zadina (R)XX100.00321072726970676554646259726970039622
7Gustav NyquistX100.00838029647349756780706636477575046610
8Ty Dellandrea (R)X100.00523367656862646367686057556065039602
9Carl Grundström (R)X100.00523571667558615845625759566360049592
10Jonah Gadjovich (R)X100.00572665696760606248595857555661049592
11Dominik Bokk (R)XX100.00413468696368676055605660556358039582
12Griffin Reinhart (R)X99.00603076748179798241716467467469050692
13Olli JuoleviX99.00681882838583907030255665506962046671
14Luke SchennX100.00611799548379904940584877608689048670
15Johan FranzenXX99.41321999717269735148555271649994039642
16Gabriel Carlsson (R)X100.0053199837874766141553360406562049631
17Erik Brännström (R)X100.0042593747873746440664964426659049631
18Timothy Liljegren (R)X100.00721968647367705735575459566466049611
19Scott MayfieldX100.00646351598070755749513959547867049602
Scratches
1Yegor Korshkov (R)X100.00391976727467685940595658557363035592
2Kyle OkposoX100.00432790587772815559494358698892030580
3Kole Lind (R)X100.00403881656962666141595559645559030582
4Jonatan Berggren (R)X100.00171180666658706444605861585858025582
5Casey CizikasX100.00212799637343656046635852547469035572
6Brock NelsonX100.00302099617760685271535958607775035572
7Calle JarnkrokX100.00212699627650655363535257537167030552
8Matt MartinX100.00907351637649564567454656498679030550
9Anders LeeXX100.00262084617961654242525250488774030542
10Reilly Walsh (R)X100.00745469636561635740535556455857030582
11Jack Rathbone (R)X100.00563666656258605640585560525752030572
TEAM AVERAGE99.8548297869756772615159565955726904161
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joacim Eriksson100.0065616676697069667163538386051682
2Olof Lindbom (R)100.0067636276636464626359605657039622
Scratches
TEAM AVERAGE100.006662647666676764676157707204565
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Brent Sutter71767883797473CAN5321,411,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joshua Ho-SangMANHATTAN SWEDES (MAN)C/RW15615212515383157213310.53%836524.350552320000292248.05%4621410001.1501001121
2Joel Eriksson EkMANHATTAN SWEDES (MAN)C/LW20101121-400132980224412.50%742121.102469500002552047.22%36246001.0001000211
3Elias PetterssonMANHATTAN SWEDES (MAN)C/RW2071017-680272550132914.00%938719.392248500000190358.33%241010000.8800000102
4Griffin ReinhartMANHATTAN SWEDES (MAN)D2011011-915525403916232.56%2951425.70145754000059000.00%0714000.4301001010
5Dylan StromeMANHATTAN SWEDES (MAN)C204711-7009355615377.14%1136118.091346240001381155.05%198178000.6101000110
6Gustav NyquistMANHATTAN SWEDES (MAN)RW20347-5421040173915227.69%1127713.88000013000000052.63%1983000.5000001110
7Olli JuoleviMANHATTAN SWEDES (MAN)D20246-10753326159913.33%3049424.74101354000060000.00%017100.2400010000
8Kirill KabanovMANHATTAN SWEDES (MAN)LW20426-103152821426249.52%532316.20202534000000061.54%1355000.3700001000
9Filip ZadinaMANHATTAN SWEDES (MAN)LW/RW15336-38019202591412.00%1027318.241125240000181062.50%882000.4400000100
10Eric NystromMANHATTAN ISLANDERSC/LW/RW5235-360108259108.00%412224.46112316000070045.04%13124000.8200000010
11Carl GrundströmMANHATTAN SWEDES (MAN)RW201341401112134117.69%51768.810000000000000.00%342000.4500000000
12Jonah GadjovichMANHATTAN SWEDES (MAN)LW2013404011152210114.55%624812.44000000001180041.67%2444000.3200000000
13Dominik BokkMANHATTAN SWEDES (MAN)LW/RW1522426061121689.52%115410.31000000000121031.25%1612000.5200000002
14Ty DellandreaMANHATTAN SWEDES (MAN)C1522404011222071310.00%320013.3500001000000045.68%8165000.4000000010
15Mathew BarzalMANHATTAN ISLANDERSC5202-50016205710.00%19519.09000111000091045.00%6032000.4200000001
16Gabriel CarlssonMANHATTAN SWEDES (MAN)D200229002132730.00%622911.490000100000000.00%015000.1700000000
17Erik BrännströmMANHATTAN SWEDES (MAN)D200224003118430.00%1326313.19000011000016000.00%014000.1500000000
18Yegor KorshkovMANHATTAN SWEDES (MAN)RW5112-1001040225.00%0336.760000000000000.00%011001.1800000000
19Johan FranzenMANHATTAN SWEDES (MAN)LW/D20022-80032721670.00%1535717.85000131000138000.00%0314000.1100000000
20Timothy LiljegrenMANHATTAN SWEDES (MAN)D20011-4201156140.00%81668.330000000002000.00%016000.1200000000
21Casey CizikasMANHATTAN SWEDES (MAN)C5101-1000120150.00%0336.7300000000000033.33%1210000.5900000000
22Luke SchennMANHATTAN SWEDES (MAN)D15000-47591912250.00%927218.17000120000033000.00%019000.0000100000
23Scott MayfieldMANHATTAN SWEDES (MAN)D20000-5603100010.00%31175.900000000000000.00%000000.0000000000
24Brock NelsonMANHATTAN SWEDES (MAN)C5000200210000.00%0142.9200000000000050.00%200000.0000000000
Team Total or Average3805287139-65201353164055791873218.98%194590815.551120315143200054218648.48%1089123123100.4704114787
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joacim ErikssonMANHATTAN SWEDES (MAN)125400.8673.875430035264144000.0000115000
2Thatcher DemkoMANHATTAN ISLANDERS93510.9083.195260028304170000.500290000
3Olof LindbomMANHATTAN SWEDES (MAN)40200.8554.4813400106938000.0000015000
Team Total or Average2581110.8853.6412040073637352000.50022020000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anders LeeMANHATTAN SWEDES (MAN)C/LW297/3/1990 9:13:24 AMNo220 Lbs6 ft3NoNoNo1Pro & Farm900,000$701,379$40,000$31,172$90,000$70,138$No
Brock NelsonMANHATTAN SWEDES (MAN)C288/11/1991 9:10:55 AMNo214 Lbs6 ft2NoNoNo2Pro & Farm550,000$428,621$40,000$31,172$55,000$42,862$No550,000$
Calle JarnkrokMANHATTAN SWEDES (MAN)C288/9/1991 7:43:56 AMNo203 Lbs6 ft0NoNoNo3Pro & Farm600,000$467,586$40,000$31,172$60,000$46,759$No600,000$600,000$
Carl GrundströmMANHATTAN SWEDES (MAN)RW2112/1/1997 10:45:33 AMYes198 Lbs6 ft2NoNoNo1Pro & Farm400,000$311,724$40,000$31,172$40,000$31,172$No
Casey CizikasMANHATTAN SWEDES (MAN)C288/9/1991 7:59:45 AMNo200 Lbs6 ft0NoNoNo2Pro & Farm375,000$292,241$40,000$31,172$37,500$29,224$No375,000$
Dominik BokkMANHATTAN SWEDES (MAN)LW/RW192/3/2000 5:46:29 AMYes181 Lbs6 ft1NoNoNo3Pro & Farm650,000$506,552$40,000$31,172$65,000$50,655$No650,000$650,000$
Dylan StromeMANHATTAN SWEDES (MAN)C223/7/1997 1:53:36 AMYes207 Lbs6 ft4NoNoNo5Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No750,000$750,000$750,000$750,000$Link
Elias PetterssonMANHATTAN SWEDES (MAN)C/RW2011/12/1998 4:39:18 AMYes182 Lbs6 ft4NoNoNo2Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No750,000$
Erik BrännströmMANHATTAN SWEDES (MAN)D209/2/1999 5:22:21 AMYes186 Lbs5 ft10NoNoNo2Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No750,000$
Filip ZadinaMANHATTAN SWEDES (MAN)LW/RW1911/27/1999 4:51:19 AMYes192 Lbs6 ft1NoNoNo3Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No750,000$750,000$
Gabriel CarlssonMANHATTAN SWEDES (MAN)D221/2/1997 3:32:56 AMYes200 Lbs6 ft7NoNoNo5Pro & Farm500,000$389,655$40,000$31,172$50,000$38,966$No500,000$500,000$500,000$500,000$
Griffin ReinhartMANHATTAN SWEDES (MAN)D251/24/1994 3:22:57 AMYes226 Lbs6 ft5NoNoNo2Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No750,000$
Gustav NyquistMANHATTAN SWEDES (MAN)RW309/1/1989No197 Lbs5 ft11NoNoNo3Pro & Farm590,000$459,793$40,000$31,172$59,000$45,979$No590,000$590,000$
Jack RathboneMANHATTAN SWEDES (MAN)D206/1/1999 8:54:12 AMYes203 Lbs6 ft1NoNoNo2Pro & Farm450,000$350,690$40,000$31,172$45,000$35,069$No450,000$
Joacim ErikssonMANHATTAN SWEDES (MAN)G308/7/1989 4:14:33 AMNo198 Lbs6 ft0NoNoNo3Pro & Farm700,000$545,517$40,000$31,172$70,000$54,552$No700,000$700,000$
Joel Eriksson EkMANHATTAN SWEDES (MAN)C/LW221/29/1997 3:04:05 AMYes198 Lbs6 ft5NoNoNo5Pro & Farm700,000$545,517$40,000$31,172$70,000$54,552$No700,000$700,000$700,000$700,000$
Johan FranzenMANHATTAN SWEDES (MAN)LW/D407/27/1979 6:22:35 AMNo182 Lbs6 ft0NoNoNo1Pro & Farm2,654,568$2,068,732$265,457$206,873$No
Jonah GadjovichMANHATTAN SWEDES (MAN)LW216/1/1998 7:26:42 AMYes182 Lbs6 ft1NoNoNo2Pro & Farm500,000$389,655$40,000$31,172$50,000$38,966$No500,000$
Jonatan BerggrenMANHATTAN SWEDES (MAN)RW197/16/2000 6:57:48 AMYes183 Lbs5 ft11NoNoNo3Pro & Farm600,000$467,586$40,000$31,172$60,000$46,759$No600,000$600,000$
Joshua Ho-SangMANHATTAN SWEDES (MAN)C/RW231/22/1996 2:27:44 AMNo184 Lbs6 ft3NoNoNo4Pro & Farm650,000$506,552$40,000$31,172$65,000$50,655$No650,000$650,000$650,000$
Kirill KabanovMANHATTAN SWEDES (MAN)LW278/9/1992 8:10:16 AMNo199 Lbs6 ft2NoNoNo3Pro & Farm725,000$565,000$40,000$31,172$72,500$56,500$No725,000$725,000$
Kole LindMANHATTAN SWEDES (MAN)RW206/1/1999 1:10:23 AMYes185 Lbs6 ft1NoNoNo2Pro & Farm650,000$506,552$40,000$31,172$65,000$50,655$No650,000$
Kyle OkposoMANHATTAN SWEDES (MAN)RW314/16/1988No219 Lbs6 ft0NoNoNo1Pro & Farm550,000$428,621$55,000$42,862$No
Luke SchennMANHATTAN SWEDES (MAN)D3011/2/1989No246 Lbs6 ft2NoNoNo3Pro & Farm2,700,000$2,104,138$40,000$31,172$270,000$210,414$No2,700,000$2,700,000$
Matt MartinMANHATTAN SWEDES (MAN)LW305/8/1989No208 Lbs6 ft2NoNoNo3Pro & Farm535,000$416,931$40,000$31,172$53,500$41,693$No535,000$535,000$
Olli JuoleviMANHATTAN SWEDES (MAN)D215/5/1998 7:10:45 AMNo189 Lbs6 ft5NoNoNo1Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No
Olof LindbomMANHATTAN SWEDES (MAN)G206/1/1999 7:08:16 AMYes220 Lbs6 ft2NoNoNo3Pro & Farm550,000$428,621$40,000$31,172$55,000$42,862$No550,000$550,000$
Reilly WalshMANHATTAN SWEDES (MAN)D206/1/1999 8:18:59 AMYes202 Lbs6 ft1NoNoNo2Pro & Farm400,000$311,724$40,000$31,172$40,000$31,172$No400,000$
Scott MayfieldMANHATTAN SWEDES (MAN)D2710/14/1992 11:52:05 AMNo226 Lbs6 ft3NoNoNo2Pro & Farm978,000$762,166$40,000$31,172$97,800$76,217$No978,000$
Timothy LiljegrenMANHATTAN SWEDES (MAN)D204/30/1999 5:25:49 AMYes203 Lbs6 ft1NoNoNo2Pro & Farm750,000$584,483$40,000$31,172$75,000$58,448$No750,000$
Ty DellandreaMANHATTAN SWEDES (MAN)C197/21/2000 5:12:35 AMYes183 Lbs6 ft0NoNoNo3Pro & Farm650,000$506,552$40,000$31,172$65,000$50,655$No650,000$650,000$
Yegor KorshkovMANHATTAN SWEDES (MAN)RW237/10/1996 9:17:53 AMYes185 Lbs6 ft4NoNoNo1Pro & Farm650,000$506,552$40,000$31,172$65,000$50,655$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3224.19200 Lbs6 ft22.50764,299$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joel Eriksson EkJoshua Ho-SangElias Pettersson40122
2Kirill KabanovDylan StromeFilip Zadina30122
3Dominik BokkTy DellandreaGustav Nyquist20122
4Jonah GadjovichJoshua Ho-SangCarl Grundström10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi40122
2Luke SchennJohan Franzen30122
3Gabriel CarlssonErik Brännström20122
4Timothy LiljegrenScott Mayfield10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joel Eriksson EkJoshua Ho-SangElias Pettersson60122
2Kirill KabanovDylan StromeFilip Zadina40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi60122
2Luke SchennJohan Franzen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joshua Ho-SangJoel Eriksson Ek60122
2Dylan StromeElias Pettersson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi60122
2Luke SchennJohan Franzen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joshua Ho-Sang60122Griffin ReinhartOlli Juolevi60122
2Joel Eriksson Ek40122Luke SchennJohan Franzen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joshua Ho-SangJoel Eriksson Ek60122
2Dylan StromeElias Pettersson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Griffin ReinhartOlli Juolevi60122
2Luke SchennJohan Franzen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joel Eriksson EkJoshua Ho-SangElias PetterssonGriffin ReinhartOlli Juolevi
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joel Eriksson EkJoshua Ho-SangElias PetterssonGriffin ReinhartOlli Juolevi
Extra Forwards
Normal PowerPlayPenalty Kill
Gustav Nyquist, Ty Dellandrea, Dominik BokkGustav Nyquist, Ty DellandreaDominik Bokk
Extra Defensemen
Normal PowerPlayPenalty Kill
Gabriel Carlsson, Erik Brännström, Timothy LiljegrenGabriel CarlssonErik Brännström, Timothy Liljegren
Penalty Shots
Joshua Ho-Sang, Joel Eriksson Ek, Dylan Strome, Elias Pettersson, Johan Franzen
Goalie
#1 : Joacim Eriksson, #2 : Olof Lindbom
Custom OT Lines Forwards
Joshua Ho-Sang, Joel Eriksson Ek, Dylan Strome, Elias Pettersson, Johan Franzen, Kirill Kabanov, Kirill Kabanov, Filip Zadina, Gustav Nyquist, Ty Dellandrea, Dominik Bokk
Custom OT Lines Defensemen
Griffin Reinhart, Olli Juolevi, Luke Schenn, Johan Franzen, Gabriel Carlsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total20511030015274-22945000002435-111116030012839-11170.42552871390082021357917419220511637194201316521121.15%702071.43%017437346.65%19840648.77%15630151.83%399219444189362178
_Since Last GM Reset20511030015274-22945000002435-111116030012839-11170.42552871390082021357917419220511637194201316521121.15%702071.43%017437346.65%19840648.77%15630151.83%399219444189362178
_Vs Conference1558020004052-12743000002124-3815020001928-9140.4674069109008202134421741922051146314211323541921.95%441175.00%017437346.65%19840648.77%15630151.83%399219444189362178
_Vs Division1246020003240-8633000001822-4613020001418-4120.50032558700820213354174192205113641158818229413.79%34779.41%017437346.65%19840648.77%15630151.83%399219444189362178

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2017L2528713957963719420131600
All Games
GPWLOTWOTL SOWSOLGFGA
2051130015274
Home Games
GPWLOTWOTL SOWSOLGFGA
94500002435
Visitor Games
GPWLOTWOTL SOWSOLGFGA
111630012839
Last 10 Games
WLOTWOTL SOWSOL
360001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
521121.15%702071.43%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
17419220511820213
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17437346.65%19840648.77%15630151.83%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
399219444189362178


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-09-052NEWTON NIGHTHAWKS2MANHATTAN SWEDES3WBoxScore
3 - 2019-09-0717MANHATTAN SWEDES4VANCOUVER THOUSANDAIRES3WXBoxScore
5 - 2019-09-0928MANHATTAN SWEDES1EDMONTON OILERS3LBoxScore
6 - 2019-09-1037CAPE FEAR WILDCATS5MANHATTAN SWEDES1LBoxScore
8 - 2019-09-1249MANHATTAN SWEDES1HALIFAX HELL3LBoxScore
9 - 2019-09-1356NEWTON NIGHTHAWKS2MANHATTAN SWEDES4WBoxScore
11 - 2019-09-1571MANHATTAN SWEDES2EDMONTON OILERS4LBoxScore
12 - 2019-09-1678EDMONTON OILERS5MANHATTAN SWEDES4LBoxScore
14 - 2019-09-1891MANHATTAN SWEDES3VANCOUVER THOUSANDAIRES2WXBoxScore
16 - 2019-09-20102LAS CRUCES MESCALEROS2MANHATTAN SWEDES3WBoxScore
18 - 2019-09-22116VANCOUVER THOUSANDAIRES6MANHATTAN SWEDES2LBoxScore
20 - 2019-09-24127MANHATTAN SWEDES4PHILADELPHIA PHANTOMS3WXBoxScore
21 - 2019-09-25133MANHATTAN SWEDES3CAPE FEAR WILDCATS2WBoxScore
22 - 2019-09-26143MANHATTAN SWEDES1NEWTON NIGHTHAWKS4LBoxScore
23 - 2019-09-27149CAPE FEAR WILDCATS2MANHATTAN SWEDES4WBoxScore
25 - 2019-09-29165BROOKLYN GRINDERS3MANHATTAN SWEDES2LBoxScore
27 - 2019-10-01177MANHATTAN SWEDES2COLORADO CUBS4LBoxScore
28 - 2019-10-02186MANHATTAN SWEDES3PHILADELPHIA PHANTOMS4LXXBoxScore
30 - 2019-10-04195SAN JOSE AVACADOES8MANHATTAN SWEDES1LBoxScore
32 - 2019-10-06209MANHATTAN SWEDES4SYRACUSE BABY BULLS7LR5BoxScore
33 - 2019-10-07215CHICAGO UNDERTAKERS-MANHATTAN SWEDES-
34 - 2019-10-08226MANHATTAN SWEDES-HALIFAX HELL-R5
36 - 2019-10-10236NORTH VAN ROCKERS-MANHATTAN SWEDES-
38 - 2019-10-12248MANHATTAN SWEDES-LAS CRUCES MESCALEROS-R5
39 - 2019-10-13259BANGOR PUPPIES-MANHATTAN SWEDES-
41 - 2019-10-15270MANHATTAN SWEDES-HALIFAX HELL-R5
43 - 2019-10-17280EDMONTON OILERS-MANHATTAN SWEDES-
44 - 2019-10-18291MANHATTAN SWEDES-EDMONTON OILERS-R5
45 - 2019-10-19297MANHATTAN SWEDES-PINCHER CREEK WOLVERINES-
47 - 2019-10-21306PINCHER CREEK WOLVERINES-MANHATTAN SWEDES-R5
49 - 2019-10-23321BROOKLYN GRINDERS-MANHATTAN SWEDES-
52 - 2019-10-26338MANHATTAN SWEDES-NEWTON NIGHTHAWKS-R5
53 - 2019-10-27344MANHATTAN SWEDES-HAWAII PUNCH-
54 - 2019-10-28351CALGARY WRANGLERS-MANHATTAN SWEDES-R5
56 - 2019-10-30367CAPE BRETON LEPRECHAUNS-MANHATTAN SWEDES-
58 - 2019-11-01378MANHATTAN SWEDES-VANCOUVER THOUSANDAIRES-R5
60 - 2019-11-03391COLORADO CUBS-MANHATTAN SWEDES-
61 - 2019-11-04402MANHATTAN SWEDES-CAPE FEAR WILDCATS-R5
63 - 2019-11-06410MANHATTAN SWEDES-DETROIT STEELERS-
64 - 2019-11-07416CAPE FEAR WILDCATS-MANHATTAN SWEDES-R5
66 - 2019-11-09431MANHATTAN SWEDES-CAPE FEAR WILDCATS-
67 - 2019-11-10437BROOKLYN GRINDERS-MANHATTAN SWEDES-R5
69 - 2019-11-12449MANHATTAN SWEDES-VANCOUVER THOUSANDAIRES-
70 - 2019-11-13460PINCHER CREEK WOLVERINES-MANHATTAN SWEDES-R5
72 - 2019-11-15476MANHATTAN SWEDES-LAS CRUCES MESCALEROS-
73 - 2019-11-16483NEWTON NIGHTHAWKS-MANHATTAN SWEDES-R5
75 - 2019-11-18496MANHATTAN SWEDES-EDMONTON OILERS-
76 - 2019-11-19504CAPE BRETON LEPRECHAUNS-MANHATTAN SWEDES-R5
79 - 2019-11-22519MANHATTAN SWEDES-PINCHER CREEK WOLVERINES-
80 - 2019-11-23523MANHATTAN SWEDES-COQUITLAM EXPRESS-R5
81 - 2019-11-24528EDMONTON OILERS-MANHATTAN SWEDES-
84 - 2019-11-27549VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-R5
86 - 2019-11-29561MANHATTAN SWEDES-PENSACOLA BLACK BEARS-
88 - 2019-12-01571VANCOUVER THOUSANDAIRES-MANHATTAN SWEDES-R5
90 - 2019-12-03585MANHATTAN SWEDES-CHICAGO UNDERTAKERS-
91 - 2019-12-04593CHICAGO UNDERTAKERS-MANHATTAN SWEDES-R5
92 - 2019-12-05597MANHATTAN SWEDES-SYRACUSE BABY BULLS-
94 - 2019-12-07615NEWTON NIGHTHAWKS-MANHATTAN SWEDES-R5
95 - 2019-12-08619MANHATTAN SWEDES-SAN JOSE AVACADOES-
97 - 2019-12-10637HAWAII PUNCH-MANHATTAN SWEDES-R5
98 - 2019-12-11646MANHATTAN SWEDES-COQUITLAM EXPRESS-
100 - 2019-12-13655MANHATTAN SWEDES-HAWAII PUNCH-R5
101 - 2019-12-14664PHILADELPHIA PHANTOMS-MANHATTAN SWEDES-
103 - 2019-12-16679MANHATTAN SWEDES-BANGOR PUPPIES-R5
104 - 2019-12-17683HALIFAX HELL-MANHATTAN SWEDES-
107 - 2019-12-20703SYRACUSE BABY BULLS-MANHATTAN SWEDES-R5
108 - 2019-12-21710MANHATTAN SWEDES-CALGARY WRANGLERS-
109 - 2019-12-22723COQUITLAM EXPRESS-MANHATTAN SWEDES-R5
111 - 2019-12-24732MANHATTAN SWEDES-BROOKLYN GRINDERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-12-26746PENSACOLA BLACK BEARS-MANHATTAN SWEDES-R5
114 - 2019-12-27753MANHATTAN SWEDES-CAPE BRETON LEPRECHAUNS-
116 - 2019-12-29767LAS CRUCES MESCALEROS-MANHATTAN SWEDES-R5
118 - 2019-12-31779MANHATTAN SWEDES-DETROIT STEELERS-
119 - 2020-01-01788CAPE FEAR WILDCATS-MANHATTAN SWEDES-R5
121 - 2020-01-03797MANHATTAN SWEDES-NEWTON NIGHTHAWKS-
122 - 2020-01-04810LAS CRUCES MESCALEROS-MANHATTAN SWEDES-R5
124 - 2020-01-06817MANHATTAN SWEDES-NORTH VAN ROCKERS-
127 - 2020-01-09834HAWAII PUNCH-MANHATTAN SWEDES-R5
130 - 2020-01-12846MANHATTAN SWEDES-PHILADELPHIA PHANTOMS-
132 - 2020-01-14856HALIFAX HELL-MANHATTAN SWEDES-R5
134 - 2020-01-16874SYRACUSE BABY BULLS-MANHATTAN SWEDES-
139 - 2020-01-21898DETROIT STEELERS-MANHATTAN SWEDES-R5
140 - 2020-01-22903MANHATTAN SWEDES-COLORADO CUBS-
144 - 2020-01-26920COQUITLAM EXPRESS-MANHATTAN SWEDES-R5



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance14,7048,895
Attendance PCT81.69%98.83%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
33 2622 - 87.40% 72,007$648,065$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
837,117$ 2,445,757$ 120,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
2,445,757$ 525,725$ 32 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,376,238$ 113 26,598$ 3,005,574$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
784224005656240313-7342121603542136162-2642102402114104151-474424038162122595711416226170169381488261582784116722385221.85%3188473.58%6773155649.68%840171249.07%575121447.36%166789018498211602776
820511030015274-22945000002435-111116030012839-111752871390082021357917419220511637194201316521121.15%702071.43%017437346.65%19840648.77%15630151.83%399219444189362178
Total Regular Season104275108657292387-9551162103542160197-3753113005115132190-586129246876022677713519284087588510199932521021104219882906321.72%38810473.20%6947192949.09%1038211849.01%731151548.25%20671109229410101965955