BROOKLYN GRINDERS

GP: 47 | W: 19 | L: 23 | OTL: 5 | P: 43
GF: 149 | GA: 173 | PP%: 24.03% | PK%: 69.82%
GM : Kyle B | Morale : 38 | Team Overall : 62
Next Games #532 vs LAS CRUCES MESCALEROS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nikolay Goldobin (R) (A)XX100.00665556887988767954787870668871039732
2Brendan Lemieux (R)X100.00886554858885797454747661697673033722
3Laurent Dauphin (R)X100.00856054757776738365777858647376056712
4Jayce Hawryluk (R)XXX100.00755160868578867667686862577974055702
5Ryan Donato (R) (C)X100.00392081858785837471696868567477054702
6Christian Fischer (R)X100.0028586788679776144697161597369041662
7Cody Glass (R)X100.00523070787469765869666458586263049631
8Evgeny Svechnikov (R)XX100.00876665768177706267615751687163046621
9Alex Formenton (R)X100.00662069767168655844665957656054043612
10Isaac Ratcliffe (R)XX100.00592370767857626664585856595956038602
11Nathan Bastian (R)X100.00403070697471696051485664556958039592
12Kirill Marchenko (R)XX100.0018878676166665757595556606055036562
13Mirco Mueller (R) (A)X100.00542386858887877543726266448381025711
14Matt CorrenteX100.00949925627569687850726560568889042670
15David MusilX100.00554572627968746850635975588576020662
16Jeremy Lauzon (R)X100.00493979777578655949555759445856037612
17Andrew Peeke (R)X100.00837367707553625634574762446153040612
18Max Gildon (R)X100.00653570756457635640615856456358040592
19Rasmus Sandin (R)X100.0015490706766656333656159446056040582
Scratches
1Aaron GagnonXX100.00565079637465655375535058559792030590
2Kody Clark (R)X100.00633070585867695759585659555860024572
3Aaron PalushajXX100.00454468687278734659463351527788020540
4Adam HenrichXX100.00484781667353443543393166598868019512
5Davis DrewiskeX100.00413593598060715350483873569090019620
6Cam Dineen (R)X100.00543263797655595133513161506058020582
7Dmitry Semykin (R)X100.00783369646262605433525455445857046582
TEAM AVERAGE100.0058397073757070625261576155726803763
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Markus Ruusu (R)100.0064605880676566646360586461051642
2Joseph Woll (R)99.0062585470626160656058576259044602
Scratches
1Daniil Tarasov (R)100.0062635864616260616257556259019602
TEAM AVERAGE99.676360577163636263625857636003861
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Brian Sutter72957486919159CAN593829,400$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nikolay GoldobinBROOKLYN GRINDERS (BRK)LW/RW432130514862082871785710211.80%2995922.3171017169601131270148.81%2524923101.0602022132
2Laurent DauphinBROOKLYN GRINDERS (BRK)C47153146-1802010380141379210.64%3089018.95614202111100061492051.97%6873423001.0302013231
3Jayce HawrylukBROOKLYN GRINDERS (BRK)C/LW/RW47162945-1100301074516740839.58%1592819.7481018241150112464049.32%734018000.9712312511
4Brendan LemieuxBROOKLYN GRINDERS (BRK)LW40192241063156638106407117.92%964516.143697760001321136.36%223511011.2711102521
5Ryan DonatoBROOKLYN GRINDERS (BRK)C4717234031353874134407212.69%1490019.1545911921014421154.14%10512720000.8901100124
6Cody GlassBROOKLYN GRINDERS (BRK)C4713821122204553102304512.75%858612.48011120111554152.56%215219000.7200000011
7Mirco MuellerBROOKLYN GRINDERS (BRK)D395131840037606635307.58%2977319.843366112000132100.00%01628000.4701000000
8Max GildonBROOKLYN GRINDERS (BRK)D4731316-11003547328159.38%2984017.8922441250001131100.00%0517000.3811000000
9Christian FischerBROOKLYN GRINDERS (BRK)RW4410616700105474204113.51%1970716.082136921015241145.71%351113000.4500000112
10Evgeny SvechnikovBROOKLYN GRINDERS (BRK)C/LW478816720089478525599.41%1566714.210000600001031142.86%912316000.4800000111
11Rasmus SandinBROOKLYN GRINDERS (BRK)D4631114130015530171810.00%3382617.980000300008000.00%01326000.3400000010
12Andrew PeekeBROOKLYN GRINDERS (BRK)D4721012-312060112704112204.88%83116524.800220760000146000.00%0828000.2100354000
13Jeremy LauzonBROOKLYN GRINDERS (BRK)D473811-2241034854818286.25%73114624.401232830002178000.00%01739000.1900020000
14Nathan BastianBROOKLYN GRINDERS (BRK)RW463811914028473316289.09%1451311.1600001000001037.50%1669000.4300000011
15Alex FormentonBROOKLYN GRINDERS (BRK)LW474711-610029274721388.51%43537.5300000000031025.00%8116000.6200000201
16Isaac RatcliffeBROOKLYN GRINDERS (BRK)C/LW44268-614038315818293.45%63918.91022017000020046.67%12088000.4111000000
17Kirill MarchenkoBROOKLYN GRINDERS (BRK)LW/RW34246-700312148814.29%21985.850111160000160055.56%4514000.6000000001
18Sven BaertschiBROOKLYN BLAZERSLW22325-34027203632358.33%426211.9400005000000142.86%7156000.3801000000
19Matt CorrenteBROOKLYN GRINDERS (BRK)D1914544325181096211.11%91769.28112119000013000.00%017000.5700311000
20Dmitry Semykin BROOKLYN GRINDERS (BRK)D440221395363816990.00%2763614.4800001000098000.00%0412000.0600100000
21Kody ClarkBROOKLYN GRINDERS (BRK)RW26112-31003318151076.67%1231212.01011012000030063.64%1118000.1300000010
22Nicolas KerdilesBROOKLYN BLAZERSC/LW/RW1011140101030.00%11717.90000050000000100.00%111001.1200000000
23David MusilBROOKLYN GRINDERS (BRK)D3011-120341000.00%45217.540000601119000.00%013000.3800000000
24David SchlemkoBROOKLYN BLAZERSD1000000200000.00%02020.520000400002000.00%001000.0000000000
25Joffrey LupulBROOKLYN BLAZERSLW/RW1000-100020010.00%01111.100000100000000.00%001000.0000000000
26Davis DrewiskeBROOKLYN GRINDERS (BRK)D1000000020100.00%02020.520000400002000.00%001000.0000000000
27Aaron GagnonBROOKLYN GRINDERS (BRK)C/RW31000000383300.00%1612.0000004000020055.56%1801000.0000000000
Team Total or Average908151248399306781909801014143750383610.51%4701407015.50376198100109724627123718751.70%2652348339110.57412121214181716
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Markus RuusuBROOKLYN GRINDERS (BRK)28121120.8853.4513910080696355100.00002324021
2Joseph WollBROOKLYN GRINDERS (BRK)2461220.8683.7712560079599340000.00002116001
3Daniil TarasovBROOKLYN GRINDERS (BRK)41010.8604.1518800139356000.667937001
Team Total or Average56192350.8763.642836001721388751100.66794747023


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron GagnonBROOKLYN GRINDERS (BRK)C/RW335/1/1986No198 Lbs5 ft11NoNoNo1Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No
Aaron PalushajBROOKLYN GRINDERS (BRK)LW/RW319/7/1988No186 Lbs5 ft11NoNoNo1Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No
Adam HenrichBROOKLYN GRINDERS (BRK)LW/RW358/11/1984 5:38:14 AMNo192 Lbs6 ft0NoNoNo1Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No
Alex FormentonBROOKLYN GRINDERS (BRK)LW209/13/1999 1:39:26 AMYes169 Lbs6 ft3NoNoNo2Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No650,000$
Andrew PeekeBROOKLYN GRINDERS (BRK)D216/1/1998 9:24:05 AMYes205 Lbs6 ft1NoNoNo1Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No
Brendan LemieuxBROOKLYN GRINDERS (BRK)LW233/15/1996 4:47:28 AMYes223 Lbs6 ft4NoNoNo1Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No
Cam DineenBROOKLYN GRINDERS (BRK)D216/1/1998 2:46:40 AMYes205 Lbs6 ft1NoNoNo1Pro & Farm400,000$179,310$40,000$17,931$40,000$17,931$No
Christian FischerBROOKLYN GRINDERS (BRK)RW224/15/1997 3:47:13 AMYes225 Lbs6 ft4NoNoNo3Pro & Farm675,000$302,586$40,000$17,931$67,500$30,259$No675,000$675,000$
Cody GlassBROOKLYN GRINDERS (BRK)C204/1/1999 4:42:34 AMYes189 Lbs6 ft3NoNoNo2Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$
Daniil TarasovBROOKLYN GRINDERS (BRK)G206/1/1999 8:26:18 AMYes203 Lbs6 ft0NoNoNo2Pro & Farm450,000$201,724$40,000$17,931$45,000$20,172$No450,000$
David MusilBROOKLYN GRINDERS (BRK)D264/9/1993 11:18:33 AMNo218 Lbs6 ft4NoNoNo2Pro & Farm1,430,000$641,034$40,000$17,931$143,000$64,103$No1,430,000$
Davis DrewiskeBROOKLYN GRINDERS (BRK)D3511/22/1984No228 Lbs6 ft2NoNoNo1Pro & Farm850,000$381,034$40,000$17,931$85,000$38,103$No
Dmitry Semykin BROOKLYN GRINDERS (BRK)D206/1/1999 5:06:58 AMYes200 Lbs6 ft0NoNoNo3Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No500,000$500,000$
Evgeny SvechnikovBROOKLYN GRINDERS (BRK)C/LW2310/31/1996 3:00:50 AMYes220 Lbs6 ft5NoNoNo2Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$
Isaac RatcliffeBROOKLYN GRINDERS (BRK)C/LW206/1/1999 1:14:10 AMYes182 Lbs6 ft0NoNoNo2Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No500,000$
Jayce HawrylukBROOKLYN GRINDERS (BRK)C/LW/RW241/1/1996 4:50:15 AMYes208 Lbs6 ft3NoNoNo1Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No
Jeremy LauzonBROOKLYN GRINDERS (BRK)D225/29/1997 4:59:54 AMYes197 Lbs6 ft2NoNoNo2Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No500,000$
Joseph WollBROOKLYN GRINDERS (BRK)G216/1/1998 2:37:13 AMYes208 Lbs6 ft1NoNoNo1Pro & Farm300,000$134,483$40,000$17,931$30,000$13,448$No
Kirill MarchenkoBROOKLYN GRINDERS (BRK)LW/RW197/21/2000 7:25:26 AMYes180 Lbs6 ft0NoNoNo3Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$No650,000$650,000$
Kody ClarkBROOKLYN GRINDERS (BRK)RW206/1/1999 7:22:07 AMYes180 Lbs6 ft0NoNoNo3Pro & Farm600,000$268,966$40,000$17,931$60,000$26,897$No600,000$600,000$
Laurent DauphinBROOKLYN GRINDERS (BRK)C246/22/1995 2:48:02 AMYes201 Lbs6 ft3NoNoNo1Pro & Farm425,000$190,517$40,000$17,931$42,500$19,052$No
Markus RuusuBROOKLYN GRINDERS (BRK)G237/1/1996 3:41:09 AMYes209 Lbs6 ft3NoNoNo2Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No500,000$
Matt CorrenteBROOKLYN GRINDERS (BRK)D313/17/1988No205 Lbs6 ft0NoNoNo1Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No
Max GildonBROOKLYN GRINDERS (BRK)D206/1/1999 7:57:26 AMYes203 Lbs6 ft0NoNoNo2Pro & Farm400,000$179,310$40,000$17,931$40,000$17,931$No400,000$
Mirco MuellerBROOKLYN GRINDERS (BRK)D243/21/1995 1:36:32 AMYes223 Lbs6 ft6NoNoNo1Pro & Farm650,000$291,379$40,000$17,931$65,000$29,138$NoNHL Link
Nathan BastianBROOKLYN GRINDERS (BRK)RW216/1/1998 9:49:39 AMYes203 Lbs6 ft1NoNoNo1Pro & Farm500,000$224,138$40,000$17,931$50,000$22,414$No
Nikolay GoldobinBROOKLYN GRINDERS (BRK)LW/RW2410/7/1995 2:25:23 AMYes197 Lbs6 ft3NoNoNo2Pro & Farm725,000$325,000$40,000$17,931$72,500$32,500$No725,000$
Rasmus SandinBROOKLYN GRINDERS (BRK)D193/7/2000 5:55:23 AMYes190 Lbs5 ft11NoNoNo3Pro & Farm750,000$336,207$40,000$17,931$75,000$33,621$No750,000$750,000$
Ryan DonatoBROOKLYN GRINDERS (BRK)C234/9/1996 5:51:18 AMYes193 Lbs6 ft1NoNoNo1Pro & Farm400,000$179,310$40,000$17,931$40,000$17,931$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2923.62201 Lbs6 ft21.69600,172$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nikolay GoldobinRyan DonatoJayce Hawryluk40122
2Brendan LemieuxLaurent DauphinChristian Fischer30122
3Evgeny SvechnikovCody GlassNathan Bastian20122
4Alex FormentonIsaac RatcliffeKirill Marchenko10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeremy LauzonAndrew Peeke40122
2Mirco MuellerRasmus Sandin30122
3Max GildonDavid Musil20122
4Andrew PeekeMatt Corrente10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nikolay GoldobinLaurent DauphinJayce Hawryluk60122
2Brendan LemieuxRyan DonatoChristian Fischer40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco MuellerMax Gildon60122
2Jeremy LauzonAndrew Peeke40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nikolay GoldobinLaurent Dauphin60122
2Cody GlassChristian Fischer40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrew PeekeJeremy Lauzon60122
2Max GildonDavid Musil40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Ryan Donato60122Mirco MuellerDavid Musil60122
2Laurent Dauphin40122Jeremy LauzonMax Gildon40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Laurent DauphinChristian Fischer60122
2Ryan DonatoEvgeny Svechnikov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco MuellerMax Gildon60122
2Andrew PeekeMatt Corrente40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nikolay GoldobinLaurent DauphinJayce HawrylukMirco MuellerJeremy Lauzon
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nikolay GoldobinLaurent DauphinJayce HawrylukMirco MuellerJeremy Lauzon
Extra Forwards
Normal PowerPlayPenalty Kill
Brendan Lemieux, Kirill Marchenko, Cody GlassIsaac Ratcliffe, Cody GlassEvgeny Svechnikov
Extra Defensemen
Normal PowerPlayPenalty Kill
Jeremy Lauzon, Andrew Peeke, Max GildonJeremy LauzonAndrew Peeke, Max Gildon
Penalty Shots
Nikolay Goldobin, Laurent Dauphin, Jayce Hawryluk, Ryan Donato, Cody Glass
Goalie
#1 : Joseph Woll, #2 : Markus Ruusu
Custom OT Lines Forwards
Isaac Ratcliffe, Laurent Dauphin, Jayce Hawryluk, Ryan Donato, Brendan Lemieux, Christian Fischer, Christian Fischer, Nathan Bastian, Evgeny Svechnikov, Cody Glass, Alex Formenton
Custom OT Lines Defensemen
Mirco Mueller, Jeremy Lauzon, David Musil, Rasmus Sandin, Andrew Peeke


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BANGOR PUPPIES531000102117410000010321431000001815380.8002134550034605341764165114651815552409211436.36%20860.00%050992854.85%500100749.65%35969451.73%9775561022444838403
2CALGARY WRANGLERS11000000936110000009360000000000021.00091524003460534444165114651822621146350.00%3166.67%050992854.85%500100749.65%35969451.73%9775561022444838403
3CAPE BRETON LEPRECHAUNS623001001618-242200000111102010010057-250.4171626420034605341464165114651813361160111481020.83%441175.00%050992854.85%500100749.65%35969451.73%9775561022444838403
4CAPE FEAR WILDCATS30300000817-920200000410-61010000047-300.0008142200346053410141651146518883030846116.67%15473.33%050992854.85%500100749.65%35969451.73%9775561022444838403
5CHICAGO UNDERTAKERS31100100912-32010010059-41100000043130.5009152400346053485416511465181002523656233.33%9366.67%050992854.85%500100749.65%35969451.73%9775561022444838403
6COLORADO CUBS10001000761000000000001000100076121.00071320003460534314165114651830148236350.00%4325.00%050992854.85%500100749.65%35969451.73%9775561022444838403
7COQUITLAM EXPRESS1010000012-11010000012-10000000000000.000112003460534184165114651825151223400.00%110.00%050992854.85%500100749.65%35969451.73%9775561022444838403
8DETROIT STEELERS31200000814-61010000025-32110000069-320.3338142200346053410541651146518972336599111.11%18666.67%050992854.85%500100749.65%35969451.73%9775561022444838403
9EDMONTON OILERS11000000413110000004130000000000021.0004711003460534414165114651829621265240.00%30100.00%050992854.85%500100749.65%35969451.73%9775561022444838403
10HALIFAX HELL20200000716-91010000046-210100000310-700.00071017003460534564165114651872176732300.00%11645.45%050992854.85%500100749.65%35969451.73%9775561022444838403
11HAWAII PUNCH1010000015-41010000015-40000000000000.00012300346053429416511465183871714300.00%6350.00%050992854.85%500100749.65%35969451.73%9775561022444838403
12MANHATTAN SWEDES3300000013760000000000033000000137661.00013213400346053492416511465187724206910550.00%10460.00%050992854.85%500100749.65%35969451.73%9775561022444838403
13NORTH VAN ROCKERS5310010015114220000007343110010088070.7001523380034605341404165114651815467711035120.00%18383.33%150992854.85%500100749.65%35969451.73%9775561022444838403
14PENSACOLA BLACK BEARS614001001926-730200100914-5312000001012-230.25019345300346053416241651146518201676512011327.27%30776.67%150992854.85%500100749.65%35969451.73%9775561022444838403
15PHILADELPHIA PHANTOMS1000000134-11000000134-10000000000010.50035800346053425416511465182691421100.00%7271.43%050992854.85%500100749.65%35969451.73%9775561022444838403
16PINCHER CREEK WOLVERINES1010000013-21010000013-20000000000000.000112003460534314165114651836109125120.00%20100.00%050992854.85%500100749.65%35969451.73%9775561022444838403
17SAN JOSE AVACADOES1010000002-21010000002-20000000000000.000000003460534234165114651830101825600.00%4175.00%050992854.85%500100749.65%35969451.73%9775561022444838403
Total47172301411149173-2424614002116684-1823119012008389-6430.45714924639500346053414014165114651813884666749531543724.03%2226769.82%250992854.85%500100749.65%35969451.73%9775561022444838403
19VANCOUVER THOUSANDAIRES3120000079-21010000024-22110000055020.333711180034605349641651146518752342609111.11%17476.47%050992854.85%500100749.65%35969451.73%9775561022444838403
_Since Last GM Reset47172301411149173-2424614002116684-1823119012008389-6430.45714924639500346053414014165114651813884666749531543724.03%2226769.82%250992854.85%500100749.65%35969451.73%9775561022444838403
_Vs Conference32121301411107113-61657002114953-41676012005860-2330.516107179286003460534937416511465189483344566331092724.77%1574571.34%250992854.85%500100749.65%35969451.73%9775561022444838403
_Vs Division2299003107172-1104400110303001255002004142-1230.5237111718800346053462441651146518643247336426751824.00%1122974.11%250992854.85%500100749.65%35969451.73%9775561022444838403

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4743W11492463951401138846667495300
All Games
GPWLOTWOTL SOWSOLGFGA
4717231411149173
Home Games
GPWLOTWOTL SOWSOLGFGA
2461402116684
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2311912008389
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1543724.03%2226769.82%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
416511465183460534
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
50992854.85%500100749.65%35969451.73%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
9775561022444838403


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-09-069CAPE BRETON LEPRECHAUNS2BROOKLYN GRINDERS4WBoxScore
5 - 2019-09-0926BROOKLYN GRINDERS3NORTH VAN ROCKERS4LXBoxScore
6 - 2019-09-1033PENSACOLA BLACK BEARS4BROOKLYN GRINDERS1LBoxScore
7 - 2019-09-1145BROOKLYN GRINDERS4NORTH VAN ROCKERS1WBoxScore
8 - 2019-09-1255NORTH VAN ROCKERS2BROOKLYN GRINDERS3WBoxScore
11 - 2019-09-1568CALGARY WRANGLERS3BROOKLYN GRINDERS9WBoxScore
12 - 2019-09-1681BROOKLYN GRINDERS5BANGOR PUPPIES3WBoxScore
13 - 2019-09-1784BROOKLYN GRINDERS2PENSACOLA BLACK BEARS5LBoxScore
15 - 2019-09-1997NORTH VAN ROCKERS1BROOKLYN GRINDERS4WBoxScore
18 - 2019-09-22114PHILADELPHIA PHANTOMS4BROOKLYN GRINDERS3LXXBoxScore
20 - 2019-09-24131BROOKLYN GRINDERS6BANGOR PUPPIES8LBoxScore
21 - 2019-09-25135BANGOR PUPPIES2BROOKLYN GRINDERS3WXXBoxScore
23 - 2019-09-27148BROOKLYN GRINDERS4VANCOUVER THOUSANDAIRES1WBoxScore
24 - 2019-09-28156CAPE BRETON LEPRECHAUNS4BROOKLYN GRINDERS1LBoxScore
25 - 2019-09-29165BROOKLYN GRINDERS3MANHATTAN SWEDES2WBoxScore
27 - 2019-10-01179PENSACOLA BLACK BEARS4BROOKLYN GRINDERS3LXBoxScore
29 - 2019-10-03189BROOKLYN GRINDERS3PENSACOLA BLACK BEARS5LBoxScore
30 - 2019-10-04200CAPE BRETON LEPRECHAUNS1BROOKLYN GRINDERS3WBoxScore
32 - 2019-10-06210BROOKLYN GRINDERS3HALIFAX HELL10LBoxScore
34 - 2019-10-08221BROOKLYN GRINDERS7COLORADO CUBS6WXBoxScore
35 - 2019-10-09229HALIFAX HELL6BROOKLYN GRINDERS4LBoxScore
38 - 2019-10-12246BROOKLYN GRINDERS1VANCOUVER THOUSANDAIRES4LBoxScore
39 - 2019-10-13254PINCHER CREEK WOLVERINES3BROOKLYN GRINDERS1LBoxScore
41 - 2019-10-15268HAWAII PUNCH5BROOKLYN GRINDERS1LBoxScore
43 - 2019-10-17276BROOKLYN GRINDERS2DETROIT STEELERS6LBoxScore
44 - 2019-10-18289BROOKLYN GRINDERS1CAPE BRETON LEPRECHAUNS2LBoxScore
45 - 2019-10-19296CHICAGO UNDERTAKERS2BROOKLYN GRINDERS1LXBoxScore
48 - 2019-10-22312VANCOUVER THOUSANDAIRES4BROOKLYN GRINDERS2LBoxScore
49 - 2019-10-23321BROOKLYN GRINDERS4MANHATTAN SWEDES1WBoxScore
51 - 2019-10-25334EDMONTON OILERS1BROOKLYN GRINDERS4WBoxScore
54 - 2019-10-28348BROOKLYN GRINDERS4CHICAGO UNDERTAKERS3WBoxScore
55 - 2019-10-29357CAPE FEAR WILDCATS5BROOKLYN GRINDERS3LBoxScore
57 - 2019-10-31370BROOKLYN GRINDERS5PENSACOLA BLACK BEARS2WBoxScore
58 - 2019-11-01377CAPE BRETON LEPRECHAUNS4BROOKLYN GRINDERS3LBoxScore
60 - 2019-11-03388BROOKLYN GRINDERS4CAPE FEAR WILDCATS7LBoxScore
61 - 2019-11-04400BROOKLYN GRINDERS4CAPE BRETON LEPRECHAUNS5LXBoxScore
62 - 2019-11-05407CHICAGO UNDERTAKERS7BROOKLYN GRINDERS4LBoxScore
65 - 2019-11-08423CAPE FEAR WILDCATS5BROOKLYN GRINDERS1LBoxScore
67 - 2019-11-10437BROOKLYN GRINDERS6MANHATTAN SWEDES4WBoxScore
68 - 2019-11-11444BROOKLYN GRINDERS1NORTH VAN ROCKERS3LBoxScore
69 - 2019-11-12450SAN JOSE AVACADOES2BROOKLYN GRINDERS0LBoxScore
71 - 2019-11-14467DETROIT STEELERS5BROOKLYN GRINDERS2LBoxScore
72 - 2019-11-15478BROOKLYN GRINDERS3BANGOR PUPPIES2WBoxScore
74 - 2019-11-17488COQUITLAM EXPRESS2BROOKLYN GRINDERS1LBoxScore
75 - 2019-11-18499BROOKLYN GRINDERS4DETROIT STEELERS3WBoxScore
78 - 2019-11-21510PENSACOLA BLACK BEARS6BROOKLYN GRINDERS5LBoxScore
79 - 2019-11-22522BROOKLYN GRINDERS4BANGOR PUPPIES2WBoxScore
81 - 2019-11-24532LAS CRUCES MESCALEROS-BROOKLYN GRINDERS-
84 - 2019-11-27545BROOKLYN GRINDERS-COQUITLAM EXPRESS-
85 - 2019-11-28555CALGARY WRANGLERS-BROOKLYN GRINDERS-
86 - 2019-11-29565BROOKLYN GRINDERS-LAS CRUCES MESCALEROS-
89 - 2019-12-02576PENSACOLA BLACK BEARS-BROOKLYN GRINDERS-
90 - 2019-12-03586BROOKLYN GRINDERS-EDMONTON OILERS-
92 - 2019-12-05600CALGARY WRANGLERS-BROOKLYN GRINDERS-
93 - 2019-12-06612BROOKLYN GRINDERS-HAWAII PUNCH-
95 - 2019-12-08620DETROIT STEELERS-BROOKLYN GRINDERS-
97 - 2019-12-10638NORTH VAN ROCKERS-BROOKLYN GRINDERS-
98 - 2019-12-11643BROOKLYN GRINDERS-CAPE BRETON LEPRECHAUNS-
99 - 2019-12-12652BROOKLYN GRINDERS-PHILADELPHIA PHANTOMS-
101 - 2019-12-14666LAS CRUCES MESCALEROS-BROOKLYN GRINDERS-
103 - 2019-12-16675BROOKLYN GRINDERS-PHILADELPHIA PHANTOMS-
105 - 2019-12-18688SAN JOSE AVACADOES-BROOKLYN GRINDERS-
106 - 2019-12-19695BROOKLYN GRINDERS-PENSACOLA BLACK BEARS-
108 - 2019-12-21708PHILADELPHIA PHANTOMS-BROOKLYN GRINDERS-
110 - 2019-12-23726BROOKLYN GRINDERS-SAN JOSE AVACADOES-
111 - 2019-12-24732MANHATTAN SWEDES-BROOKLYN GRINDERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-12-26744BROOKLYN GRINDERS-SAN JOSE AVACADOES-
114 - 2019-12-27751PHILADELPHIA PHANTOMS-BROOKLYN GRINDERS-
117 - 2019-12-30770BROOKLYN GRINDERS-PINCHER CREEK WOLVERINES-
118 - 2019-12-31776BANGOR PUPPIES-BROOKLYN GRINDERS-
119 - 2020-01-01789BROOKLYN GRINDERS-COLORADO CUBS-
121 - 2020-01-03799BANGOR PUPPIES-BROOKLYN GRINDERS-
124 - 2020-01-06816SYRACUSE BABY BULLS-BROOKLYN GRINDERS-
127 - 2020-01-09833BROOKLYN GRINDERS-CHICAGO UNDERTAKERS-
128 - 2020-01-10838BROOKLYN GRINDERS-CALGARY WRANGLERS-
130 - 2020-01-12843NORTH VAN ROCKERS-BROOKLYN GRINDERS-
132 - 2020-01-14860BROOKLYN GRINDERS-NORTH VAN ROCKERS-
133 - 2020-01-15861BROOKLYN GRINDERS-CALGARY WRANGLERS-
134 - 2020-01-16869COLORADO CUBS-BROOKLYN GRINDERS-
136 - 2020-01-18883BROOKLYN GRINDERS-NEWTON NIGHTHAWKS-
137 - 2020-01-19886BROOKLYN GRINDERS-NORTH VAN ROCKERS-
139 - 2020-01-21896COLORADO CUBS-BROOKLYN GRINDERS-
142 - 2020-01-24911NEWTON NIGHTHAWKS-BROOKLYN GRINDERS-
144 - 2020-01-26919BROOKLYN GRINDERS-SYRACUSE BABY BULLS-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance43,95123,877
Attendance PCT91.56%99.49%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
18 2826 - 94.21% 71,502$1,716,049$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,412,548$ 1,740,500$ 116,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,740,500$ 960,668$ 29 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,287,037$ 65 17,723$ 1,151,995$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
784194903544250316-664292602311128165-3742102301233122151-2938250409659405310189162276705807730642480811114616742696223.05%3678078.20%2819157552.00%833167349.79%632124150.93%170791118238111568776
847172301411149173-2424614002116684-1823119012008389-64314924639500346053414014165114651813884666749531543724.03%2226769.82%250992854.85%500100749.65%35969451.73%9775561022444838403
Total Regular Season131367204955399489-9066154002522194249-5565213202433205240-3581399655105440871611422036771121131811958238681277182026274239923.40%58914775.04%41328250353.06%1333268049.74%991193551.21%268514682845125624061179