BROOKLYN GRINDERS

GP: 27 | W: 12 | L: 13 | OTL: 2 | P: 26
GF: 81 | GA: 93 | PP%: 21.79% | PK%: 61.39%
GM : Kyle B | Morale : 45 | Team Overall : 63
Next Games #305 vs SYRACUSE BABY BULLS
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Brendan Lemieux (R) (A)X99.00937049898887877754777969697875060752
2Jayce Hawryluk (R)XXX100.00805655878887867867717068578176050732
3Laurent Dauphin (R) (A)X100.00906549797773738865828359647477052732
4Ryan Donato (R) (C)X100.00371883878282837671787869567679051732
5Christian Fischer (R)X100.0023191868180866844676963597571051682
6Cody Glass (R)X100.00733169847579766669686663586465051671
7Evgeny Svechnikov (R)XX100.00886665848077796268616554687774048661
8Alex Formenton (R)X100.00631772797266655642655857656155041612
9Matthew Boldy (R)X100.00341179686265636344696054675468051601
10Nathan Bastian (R)X100.00372773757670765951475567557261051602
11Isaac Ratcliffe (R)XX100.00562073717360626564575755596259048592
12Kirill Marchenko (R)XX100.0013383716664665758595556606257051572
13David MusilX100.00534374608067746950636078588879054672
14Jeremy Lauzon (R)X100.00473781798578765749585558446159048632
15Andrew Peeke (R)X100.00887862657676626534565662446456044632
16Max Gildon (R)X100.00633372786969635740625958456560049622
17Rasmus Sandin (R)X100.00301990747271786333656163446359052622
18Tobias Björnfot (R)X100.00281779676765636044645965506069051591
19Dmitry Semykin (R)X100.00793468666760605033485055446059047582
Scratches
1Nicolas KerdilesXXX100.00706835657977806964756764558171020662
2Graeme Clarke (R)X100.00372275676560626254605956505558023582
3Alexander Campbell (R)X100.00345168636066645950615957555859027572
4Aaron Huglen (R)X100.0011479646363696254606057545450023572
5Kody Clark (R)X100.00602773636366695460555359556062023572
6Cam Dineen (R)X100.00492768747659594933463262506159023572
TEAM AVERAGE99.9653347174747171645263616155676504463
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Markus Ruusu (R)100.0063605880676768666560586663041652
2Daniil Tarasov (R)97.0061635869636361626357556360046612
Scratches
1Joseph Woll (R)100.0062585475646362676054576560044612
TEAM AVERAGE99.006260577565646465635757656104462
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Brian Sutter76967887959555CAN602829,400$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brendan LemieuxBROOKLYN GRINDERS (BRK)LW27172138967257149126418913.49%1266324.5952717670002653141.26%1434224011.1400203521
2Jayce HawrylukBROOKLYN GRINDERS (BRK)C/LW/RW271621371253256946115465613.91%1457321.25281012721014742249.93%6912516001.2900122243
3Christian FischerBROOKLYN GRINDERS (BRK)RW279918120072454192916.67%2150118.58246571000001136.36%331011000.7200000022
4Evgeny SvechnikovBROOKLYN GRINDERS (BRK)C/LW278917-2371568368726609.20%447417.582354510001160033.33%24288000.7200120113
5Ryan DonatoBROOKLYN GRINDERS (BRK)C278917-22027568522509.41%1049418.303146540003292053.02%3152610000.6900000110
6David MusilBROOKLYN GRINDERS (BRK)D2711516213529633712252.70%3865424.22145863011275000.00%0520000.4900100002
7Laurent DauphinBROOKLYN GRINDERS (BRK)C2776133155582766204110.61%834912.93000000001270152.56%156215000.7400001003
8Rasmus SandinBROOKLYN GRINDERS (BRK)D2728106552301671012.50%2142715.8412332800002100.00%067000.4700001101
9Alex FormentonBROOKLYN GRINDERS (BRK)LW2344808021204214219.52%830413.22000000001311040.48%42118000.5300000001
10Max GildonBROOKLYN GRINDERS (BRK)D2708831410283013860.00%2652519.48011050000050000.00%0622000.3000011000
11Andrew PeekeBROOKLYN GRINDERS (BRK)D243361212335403819111015.79%2754122.57000362000152010.00%0413000.2200322001
12Cody GlassBROOKLYN GRINDERS (BRK)C27235-28022262414198.33%41997.3810114000080154.39%57103000.5000000000
13Nathan BastianBROOKLYN GRINDERS (BRK)RW27145-11002032216114.76%1142415.71011154000021035.71%14412000.2400000000
14Kirill MarchenkoBROOKLYN GRINDERS (BRK)LW/RW271451204331910205.26%735513.1601101000001016.67%684000.2800000000
15Jeremy LauzonBROOKLYN GRINDERS (BRK)D27033455102917460.00%3454720.27000152000056000.00%0513000.1100010000
16Matthew BoldyBROOKLYN GRINDERS (BRK)LW27112-20041364616.67%42057.60000000000280050.00%610000.1900000001
17Isaac RatcliffeBROOKLYN GRINDERS (BRK)C/LW270220551385120.00%01154.2800008000030055.00%2000000.3500010000
18Tobias BjörnfotBROOKLYN GRINDERS (BRK)D27101-20052813557.69%1936513.5400001000141000.00%0315000.0500000000
19Alexander CampbellBROOKLYN GRINDERS (BRK)LW4011120457160.00%45213.03000000000000100.00%310000.3800000000
20Dmitry Semykin BROOKLYN GRINDERS (BRK)D27000-51951651030.00%91816.710000000009000.00%014000.0000000000
Team Total or Average510811312124938814051859877327147510.48%281795615.60172744616451121657412749.27%1510217195010.53008910101018
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Daniil TarasovBROOKLYN GRINDERS (BRK)145710.8983.167400039381217100.0000137200
2Markus RuusuBROOKLYN GRINDERS (BRK)94310.8823.295112028238116010.000095100
3Joseph WollBROOKLYN GRINDERS (BRK)83300.8784.083680025205129000.0000515010
Team Total or Average31121320.8883.4116202092824462110.00002727310


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron HuglenBROOKLYN GRINDERS (BRK)RW193/6/2001 3:06:41 AMYes165 Lbs5 ft11NoNoNo3Pro & Farm500,000$338,129$40,000$27,050$50,000$33,813$No500,000$500,000$
Alex FormentonBROOKLYN GRINDERS (BRK)LW219/13/1999 1:39:26 AMYes173 Lbs6 ft5NoNoNo1Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No
Alexander CampbellBROOKLYN GRINDERS (BRK)LW196/1/2001 8:00:21 AMYes180 Lbs6 ft0NoNoNo3Pro & Farm600,000$405,755$40,000$27,050$60,000$40,576$No600,000$600,000$
Andrew PeekeBROOKLYN GRINDERS (BRK)D226/1/1998 9:24:05 AMYes207 Lbs6 ft1NoNoNo5Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No650,000$650,000$650,000$650,000$
Brendan LemieuxBROOKLYN GRINDERS (BRK)LW243/15/1996 4:47:28 AMYes226 Lbs6 ft4NoNoNo5Pro & Farm1,025,000$693,165$40,000$27,050$102,500$69,317$No1,025,000$1,025,000$1,025,000$1,025,000$
Cam DineenBROOKLYN GRINDERS (BRK)D226/1/1998 2:46:40 AMYes207 Lbs6 ft1NoNoNo3Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No650,000$650,000$
Christian FischerBROOKLYN GRINDERS (BRK)RW234/15/1997 3:47:13 AMYes229 Lbs6 ft4NoNoNo2Pro & Farm675,000$456,475$40,000$27,050$67,500$45,647$No675,000$
Cody GlassBROOKLYN GRINDERS (BRK)C214/1/1999 4:42:34 AMYes190 Lbs6 ft3NoNoNo1Pro & Farm750,000$507,194$40,000$27,050$75,000$50,719$No
Daniil TarasovBROOKLYN GRINDERS (BRK)G216/1/1999 8:26:18 AMYes209 Lbs6 ft0NoNoNo1Pro & Farm450,000$304,317$40,000$27,050$45,000$30,432$No
David MusilBROOKLYN GRINDERS (BRK)D274/9/1993 11:18:33 AMNo221 Lbs6 ft4NoNoNo1Pro & Farm1,430,000$967,050$40,000$27,050$143,000$96,705$No
Dmitry Semykin BROOKLYN GRINDERS (BRK)D216/1/1999 5:06:58 AMYes201 Lbs6 ft2NoNoNo2Pro & Farm500,000$338,129$40,000$27,050$50,000$33,813$No500,000$
Evgeny SvechnikovBROOKLYN GRINDERS (BRK)C/LW2410/31/1996 3:00:50 AMYes222 Lbs6 ft5NoNoNo1Pro & Farm750,000$507,194$40,000$27,050$75,000$50,719$No
Graeme ClarkeBROOKLYN GRINDERS (BRK)RW196/1/2001 8:40:31 AMYes180 Lbs6 ft0NoNoNo3Pro & Farm550,000$371,942$40,000$27,050$55,000$37,194$No550,000$550,000$
Isaac RatcliffeBROOKLYN GRINDERS (BRK)C/LW216/1/1999 1:14:10 AMYes183 Lbs6 ft1NoNoNo1Pro & Farm500,000$338,129$40,000$27,050$50,000$33,813$No
Jayce HawrylukBROOKLYN GRINDERS (BRK)C/LW/RW241/1/1996 4:50:15 AMYes211 Lbs6 ft3NoNoNo4Pro & Farm800,000$541,007$40,000$27,050$80,000$54,101$No800,000$800,000$800,000$
Jeremy LauzonBROOKLYN GRINDERS (BRK)D235/29/1997 4:59:54 AMYes199 Lbs6 ft2NoNoNo1Pro & Farm500,000$338,129$40,000$27,050$50,000$33,813$No
Joseph WollBROOKLYN GRINDERS (BRK)G226/1/1998 2:37:13 AMYes211 Lbs6 ft1NoNoNo5Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No650,000$650,000$650,000$650,000$
Kirill MarchenkoBROOKLYN GRINDERS (BRK)LW/RW207/21/2000 7:25:26 AMYes182 Lbs6 ft1NoNoNo2Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No650,000$
Kody ClarkBROOKLYN GRINDERS (BRK)RW216/1/1999 7:22:07 AMYes183 Lbs6 ft1NoNoNo2Pro & Farm600,000$405,755$40,000$27,050$60,000$40,576$No600,000$
Laurent DauphinBROOKLYN GRINDERS (BRK)C256/22/1995 2:48:02 AMYes203 Lbs6 ft3NoNoNo4Pro & Farm800,000$541,007$40,000$27,050$80,000$54,101$No800,000$800,000$800,000$
Markus RuusuBROOKLYN GRINDERS (BRK)G247/1/1996 3:41:09 AMYes212 Lbs6 ft3NoNoNo1Pro & Farm500,000$338,129$40,000$27,050$50,000$33,813$No
Matthew BoldyBROOKLYN GRINDERS (BRK)LW194/5/2001 4:24:53 AMYes192 Lbs6 ft0NoNoNo3Pro & Farm750,000$507,194$40,000$27,050$75,000$50,719$No750,000$750,000$
Max GildonBROOKLYN GRINDERS (BRK)D216/1/1999 7:57:26 AMYes204 Lbs6 ft0NoNoNo1Pro & Farm400,000$270,504$40,000$27,050$40,000$27,050$No
Nathan BastianBROOKLYN GRINDERS (BRK)RW226/1/1998 9:49:39 AMYes206 Lbs6 ft1NoNoNo5Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No650,000$650,000$650,000$650,000$
Nicolas KerdilesBROOKLYN GRINDERS (BRK)C/LW/RW269/10/1994 2:55:49 AMNo217 Lbs6 ft3NoNoNo1Pro & Farm1,696,250$1,147,104$40,000$27,050$169,625$114,710$No
Rasmus SandinBROOKLYN GRINDERS (BRK)D203/7/2000 5:55:23 AMYes193 Lbs5 ft11NoNoNo2Pro & Farm750,000$507,194$40,000$27,050$75,000$50,719$No750,000$
Ryan DonatoBROOKLYN GRINDERS (BRK)C244/9/1996 5:51:18 AMYes195 Lbs6 ft1NoNoNo4Pro & Farm800,000$541,007$40,000$27,050$80,000$54,101$No800,000$800,000$800,000$
Tobias BjörnfotBROOKLYN GRINDERS (BRK)D194/6/2001 4:56:28 AMYes187 Lbs6 ft0NoNoNo3Pro & Farm650,000$439,568$40,000$27,050$65,000$43,957$No650,000$650,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2821.93200 Lbs6 ft22.50709,866$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LemieuxJayce HawrylukChristian Fischer40122
2Evgeny SvechnikovRyan DonatoKirill Marchenko30122
3Matthew BoldyLaurent DauphinKirill Marchenko15122
4Alex FormentonCody GlassBrendan Lemieux15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrew PeekeRasmus Sandin40122
2Jeremy LauzonMax Gildon30122
3Dmitry Semykin Tobias Björnfot20122
4Dmitry Semykin David Musil10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LemieuxJayce HawrylukChristian Fischer60122
2Evgeny SvechnikovRyan DonatoNathan Bastian40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrew PeekeRasmus Sandin60122
2Jeremy LauzonMax Gildon40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Brendan LemieuxJayce Hawryluk60122
2Ryan DonatoLaurent Dauphin40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrew PeekeTobias Björnfot60122
2Jeremy LauzonMax Gildon40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Brendan Lemieux60122David MusilTobias Björnfot60122
2Jayce Hawryluk40122Jeremy LauzonMax Gildon40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Ryan DonatoJayce Hawryluk60122
2Evgeny SvechnikovLaurent Dauphin40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1David MusilRasmus Sandin60122
2Jeremy LauzonMax Gildon40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brendan LemieuxJayce HawrylukChristian FischerRasmus SandinJeremy Lauzon
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brendan LemieuxJayce HawrylukChristian FischerRasmus SandinJeremy Lauzon
Extra Forwards
Normal PowerPlayPenalty Kill
Isaac Ratcliffe, Cody Glass, Matthew BoldyIsaac Ratcliffe, Cody GlassNathan Bastian
Extra Defensemen
Normal PowerPlayPenalty Kill
Rasmus Sandin, Tobias Björnfot, Dmitry Semykin Rasmus SandinTobias Björnfot, Dmitry Semykin
Penalty Shots
Brendan Lemieux, Jayce Hawryluk, Ryan Donato, Laurent Dauphin, Christian Fischer
Goalie
#1 : Daniil Tarasov, #2 : Markus Ruusu
Custom OT Lines Forwards
Brendan Lemieux, Jayce Hawryluk, Ryan Donato, Laurent Dauphin, Christian Fischer, Cody Glass, Cody Glass, Evgeny Svechnikov, Alex Formenton, Nathan Bastian,
Custom OT Lines Defensemen
David Musil, Dmitry Semykin , Jeremy Lauzon, Max Gildon, Rasmus Sandin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BANGOR PUPPIES2200000012570000000000022000000125741.000122032002124342612332762622602521322150.00%8362.50%028556550.44%25454446.69%20539951.38%566319577246479238
2CALGARY WRANGLERS523000001219-72110000068-231200000611-540.4001221330021243421382332762622116454712222313.64%171041.18%028556550.44%25454446.69%20539951.38%566319577246479238
3CAPE BRETON LEPRECHAUNS1010000058-3000000000001010000058-300.0005813002124342382332762622257372311436.36%6350.00%028556550.44%25454446.69%20539951.38%566319577246479238
4CAPE FEAR WILDCATS2010010015-41010000003-31000010012-110.25012300212434253233276262270201237300.00%6266.67%028556550.44%25454446.69%20539951.38%566319577246479238
5CHICAGO UNDERTAKERS1010000034-11010000034-10000000000000.00035800212434225233276262231816233133.33%8362.50%028556550.44%25454446.69%20539951.38%566319577246479238
6COLORADO CUBS32100000770000000000003210000077040.66771017102124342812332762622103412649200.00%13376.92%028556550.44%25454446.69%20539951.38%566319577246479238
7COQUITLAM EXPRESS2110000010100110000008531010000025-320.500101626002124342662332762622692153409333.33%9455.56%028556550.44%25454446.69%20539951.38%566319577246479238
8DETROIT STEELERS1010000023-11010000023-10000000000000.0002460021243423723327626222811620200.00%3166.67%028556550.44%25454446.69%20539951.38%566319577246479238
9HAWAII PUNCH11000000633000000000001100000063321.0006111700212434242233276262231106142150.00%3233.33%028556550.44%25454446.69%20539951.38%566319577246479238
10MANHATTAN SWEDES11000000541110000005410000000000021.00057120021243423123327626223812619300.00%3233.33%028556550.44%25454446.69%20539951.38%566319577246479238
11NORTH VAN ROCKERS20101000770201010007700000000000020.5007916002124342562332762622672320294250.00%5180.00%128556550.44%25454446.69%20539951.38%566319577246479238
12PENSACOLA BLACK BEARS1010000012-11010000012-10000000000000.00012300212434220233276262234132010000.00%5180.00%028556550.44%25454446.69%20539951.38%566319577246479238
13PHILADELPHIA PHANTOMS10001000321000000000001000100032121.000347002124342212332762622266102311100.00%5180.00%028556550.44%25454446.69%20539951.38%566319577246479238
14SAN JOSE AVACADOES3110010067-13110010067-10000000000030.50061016002124342702332762622962889587114.29%7271.43%028556550.44%25454446.69%20539951.38%566319577246479238
Total271013022008193-121347011003843-51466011004350-7260.481811312121021243427732332762622825281390518781721.79%1013961.39%128556550.44%25454446.69%20539951.38%566319577246479238
16VANCOUVER THOUSANDAIRES1010000017-6000000000001010000017-600.00012300212434234233276262231112119700.00%3166.67%028556550.44%25454446.69%20539951.38%566319577246479238
_Since Last GM Reset271013022008193-121347011003843-51466011004350-7260.481811312121021243427732332762622825281390518781721.79%1013961.39%128556550.44%25454446.69%20539951.38%566319577246479238
_Vs Conference20710021005864-61026011002531-610540100033330190.47558931511021243425472332762622586207292389541324.07%772863.64%128556550.44%25454446.69%20539951.38%566319577246479238
_Vs Division62301000252233020100089-1321000001713460.500253964002124342175233276262218668989417741.18%24866.67%128556550.44%25454446.69%20539951.38%566319577246479238

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2726W28113121277382528139051810
All Games
GPWLOTWOTL SOWSOLGFGA
27101322008193
Home Games
GPWLOTWOTL SOWSOLGFGA
134711003843
Visitor Games
GPWLOTWOTL SOWSOLGFGA
146611004350
Last 10 Games
WLOTWOTL SOWSOL
630100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
781721.79%1013961.39%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
23327626222124342
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
28556550.44%25454446.69%20539951.38%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
566319577246479238


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-09-085SAN JOSE AVACADOES3BROOKLYN GRINDERS2LXBoxScore
4 - 2020-09-1122SAN JOSE AVACADOES1BROOKLYN GRINDERS3WBoxScore
5 - 2020-09-1228BROOKLYN GRINDERS5CAPE BRETON LEPRECHAUNS8LBoxScore
7 - 2020-09-1438BROOKLYN GRINDERS2COLORADO CUBS4LBoxScore
9 - 2020-09-1651BROOKLYN GRINDERS7BANGOR PUPPIES2WBoxScore
10 - 2020-09-1761DETROIT STEELERS3BROOKLYN GRINDERS2LBoxScore
11 - 2020-09-1872COQUITLAM EXPRESS5BROOKLYN GRINDERS8WBoxScore
13 - 2020-09-2085BROOKLYN GRINDERS1CALGARY WRANGLERS2LBoxScore
15 - 2020-09-2297CALGARY WRANGLERS5BROOKLYN GRINDERS1LBoxScore
17 - 2020-09-24108BROOKLYN GRINDERS5BANGOR PUPPIES3WBoxScore
19 - 2020-09-26119NORTH VAN ROCKERS3BROOKLYN GRINDERS2LBoxScore
20 - 2020-09-27128BROOKLYN GRINDERS3COLORADO CUBS2WBoxScore
22 - 2020-09-29140BROOKLYN GRINDERS1VANCOUVER THOUSANDAIRES7LBoxScore
23 - 2020-09-30148PENSACOLA BLACK BEARS2BROOKLYN GRINDERS1LBoxScore
24 - 2020-10-01158BROOKLYN GRINDERS3PHILADELPHIA PHANTOMS2WXBoxScore
26 - 2020-10-03168CHICAGO UNDERTAKERS4BROOKLYN GRINDERS3LBoxScore
28 - 2020-10-05183SAN JOSE AVACADOES3BROOKLYN GRINDERS1LBoxScore
30 - 2020-10-07196BROOKLYN GRINDERS6HAWAII PUNCH3WBoxScore
31 - 2020-10-08207BROOKLYN GRINDERS2COQUITLAM EXPRESS5LBoxScore
33 - 2020-10-10214NORTH VAN ROCKERS4BROOKLYN GRINDERS5WXBoxScore
34 - 2020-10-11227BROOKLYN GRINDERS1CAPE FEAR WILDCATS2LXBoxScore
35 - 2020-10-12239CAPE FEAR WILDCATS3BROOKLYN GRINDERS0LBoxScore
38 - 2020-10-15250BROOKLYN GRINDERS5CALGARY WRANGLERS4WBoxScore
39 - 2020-10-16260CALGARY WRANGLERS3BROOKLYN GRINDERS5WBoxScore
41 - 2020-10-18273BROOKLYN GRINDERS0CALGARY WRANGLERS5LBoxScore
43 - 2020-10-20280MANHATTAN SWEDES4BROOKLYN GRINDERS5WBoxScore
45 - 2020-10-22293BROOKLYN GRINDERS2COLORADO CUBS1WBoxScore
47 - 2020-10-24305BROOKLYN GRINDERS-SYRACUSE BABY BULLS-
48 - 2020-10-25313CHICAGO UNDERTAKERS-BROOKLYN GRINDERS-
49 - 2020-10-26326EDMONTON OILERS-BROOKLYN GRINDERS-
51 - 2020-10-28337COQUITLAM EXPRESS-BROOKLYN GRINDERS-
52 - 2020-10-29349BROOKLYN GRINDERS-EDMONTON OILERS-
54 - 2020-10-31359BROOKLYN GRINDERS-DETROIT STEELERS-
55 - 2020-11-01371DETROIT STEELERS-BROOKLYN GRINDERS-
57 - 2020-11-03379COQUITLAM EXPRESS-BROOKLYN GRINDERS-
59 - 2020-11-05393BROOKLYN GRINDERS-CHICAGO UNDERTAKERS-
61 - 2020-11-07401BROOKLYN GRINDERS-NORTH VAN ROCKERS-
62 - 2020-11-08412PENSACOLA BLACK BEARS-BROOKLYN GRINDERS-
65 - 2020-11-11426CHICAGO UNDERTAKERS-BROOKLYN GRINDERS-
67 - 2020-11-13437BROOKLYN GRINDERS-SAN JOSE AVACADOES-
68 - 2020-11-14447BROOKLYN GRINDERS-PHILADELPHIA PHANTOMS-
70 - 2020-11-16456PENSACOLA BLACK BEARS-BROOKLYN GRINDERS-
72 - 2020-11-18469BROOKLYN GRINDERS-PINCHER CREEK WOLVERINES-
74 - 2020-11-20477PINCHER CREEK WOLVERINES-BROOKLYN GRINDERS-
75 - 2020-11-21491HALIFAX HELL-BROOKLYN GRINDERS-
77 - 2020-11-23506BROOKLYN GRINDERS-VANCOUVER THOUSANDAIRES-
78 - 2020-11-24509BROOKLYN GRINDERS-BANGOR PUPPIES-
80 - 2020-11-26522PHILADELPHIA PHANTOMS-BROOKLYN GRINDERS-
81 - 2020-11-27532BROOKLYN GRINDERS-PENSACOLA BLACK BEARS-
83 - 2020-11-29545NEWTON NIGHTHAWKS-BROOKLYN GRINDERS-
84 - 2020-11-30557BROOKLYN GRINDERS-PINCHER CREEK WOLVERINES-
86 - 2020-12-02565NORTH VAN ROCKERS-BROOKLYN GRINDERS-
87 - 2020-12-03575BROOKLYN GRINDERS-BANGOR PUPPIES-
89 - 2020-12-05587LAS CRUCES MESCALEROS-BROOKLYN GRINDERS-
91 - 2020-12-07597BROOKLYN GRINDERS-PHILADELPHIA PHANTOMS-
92 - 2020-12-08608PHILADELPHIA PHANTOMS-BROOKLYN GRINDERS-
94 - 2020-12-10624BROOKLYN GRINDERS-HAWAII PUNCH-
95 - 2020-12-11631CAPE BRETON LEPRECHAUNS-BROOKLYN GRINDERS-
97 - 2020-12-13642BROOKLYN GRINDERS-MANHATTAN SWEDES-
98 - 2020-12-14651CAPE BRETON LEPRECHAUNS-BROOKLYN GRINDERS-
99 - 2020-12-15663BROOKLYN GRINDERS-PENSACOLA BLACK BEARS-
100 - 2020-12-16674LAS CRUCES MESCALEROS-BROOKLYN GRINDERS-
102 - 2020-12-18684BROOKLYN GRINDERS-PENSACOLA BLACK BEARS-
104 - 2020-12-20692BROOKLYN GRINDERS-COLORADO CUBS-
105 - 2020-12-21703SYRACUSE BABY BULLS-BROOKLYN GRINDERS-
107 - 2020-12-23717BROOKLYN GRINDERS-SAN JOSE AVACADOES-
109 - 2020-12-25726SAN JOSE AVACADOES-BROOKLYN GRINDERS-
111 - 2020-12-27740BROOKLYN GRINDERS-CAPE BRETON LEPRECHAUNS-
112 - 2020-12-28747DETROIT STEELERS-BROOKLYN GRINDERS-
114 - 2020-12-30764VANCOUVER THOUSANDAIRES-BROOKLYN GRINDERS-
Trade Deadline --- Trades can’t be done after this day is simulated!
116 - 2021-01-01773BROOKLYN GRINDERS-NORTH VAN ROCKERS-
117 - 2021-01-02782BROOKLYN GRINDERS-NEWTON NIGHTHAWKS-
118 - 2021-01-03790BANGOR PUPPIES-BROOKLYN GRINDERS-
120 - 2021-01-05805VANCOUVER THOUSANDAIRES-BROOKLYN GRINDERS-
122 - 2021-01-07820HAWAII PUNCH-BROOKLYN GRINDERS-
123 - 2021-01-08826BROOKLYN GRINDERS-DETROIT STEELERS-
125 - 2021-01-10837BROOKLYN GRINDERS-LAS CRUCES MESCALEROS-
126 - 2021-01-11843BROOKLYN GRINDERS-CHICAGO UNDERTAKERS-
128 - 2021-01-13857BANGOR PUPPIES-BROOKLYN GRINDERS-
130 - 2021-01-15873BROOKLYN GRINDERS-HALIFAX HELL-
131 - 2021-01-16879SAN JOSE AVACADOES-BROOKLYN GRINDERS-
134 - 2021-01-19894BROOKLYN GRINDERS-CAPE BRETON LEPRECHAUNS-
135 - 2021-01-20901COLORADO CUBS-BROOKLYN GRINDERS-
137 - 2021-01-22914COLORADO CUBS-BROOKLYN GRINDERS-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance23,55812,828
Attendance PCT90.61%98.68%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
29 2799 - 93.30% 78,227$1,016,950$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
911,718$ 1,987,625$ 112,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,987,625$ 643,203$ 28 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,268,581$ 94 20,266$ 1,905,004$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
884333803712271296-2542142200411122146-2442191603301149150-166271449720016210410172414737840822282479824125616392745720.80%39010972.05%7880163253.92%879176249.89%650127650.94%173997818097941520734
9271013022008193-121347011003843-51466011004350-726811312121021243427732332762622825281390518781721.79%1013961.39%128556550.44%25454446.69%20539951.38%566319577246479238
Total Regular Season111435105912352389-3755182901511160189-2956252204401192200-892352580932118312813593187970111610843033041105164621573527421.02%49114869.86%81165219753.03%1133230649.13%855167551.04%23051297238710401999973